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In this paper, a regularized long wave travelling along an unsmooth boundary is 
depicted by the fractal calculus, and its fractal variational principle is estab-
lished via the fractal semi-inverse method, which is very helpful to construct the 
conservation laws in the fractal space and to study the structure of the analytical 
solution, and a fractal solitary wave solution is obtained. 
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Introduction 

The linear and non-linear differential equations are very important to describe very 

complex nature phenomena that occur in the real world. The concerned disciplines include 

engineering, mechanics, physics, and thermal science. However, it is very difficult for tradi-

tional differential models to depict the complexity of nature phenomena of discontinuous 

phenomena, problems in a micro-gravity condition, and porous media [1-3]. A differential 

model requires that each variable is differentiable, however, a discontinuous problem forbids 

this basic assumption, so fractal calculus [4, 5] has to be adopted. Tian et al. [6] and He [7] 

established a fractal MEMS oscillator in a fractal space. He et al. [8] suggested a fractal ther-

modynamical model for heat conduction in a porous concrete. Anjum et al. [9] obtained a 

fractal population model. He et al. [10] revised dynamic economics in view of fractal calcu-

lus. Recently fractal vibration systems have also been caught much attention, and many new 

and attractive properties were revealed [11-14].  

In this paper, we mainly consider the fractal non-linear regularized long wave model 

with unsmooth boundaries, which reads: 
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where ( )a t is a function of ,t  a – the fractal dimension, b – a constant, and t  and 
x   – the fractal derivatives, which are defined [4, 5]: 

–––––––––––––– 
* Corresponding author, e-mail: rfyuanrfyuan@126.com 

Qi MA 

a,b

, Ruifu YUAN 

a,c*

, and Chun WANG 

a

 

mailto:rfyuanrfyuan@126.com


Ma, Q., et al.: Variational Method to Fractal Long-Wave Model with … 
1780 THERMAL SCIENCE: Year 2023, Vol. 27, No. 3A, pp. 1779-1786 

 
0

0
0

00

( ) ( )
( ) (1 ) lim

( )tt t
t

t t
t

t t t



 

 


→−
 

−
=  +

 −
 (2) 

 
0

0
0

00

( ) ( )
( ) (1 ) lim

( )xx x
x

x x
x

x x x



 

 


→−
 

−
=  +

 −
 (3) 

Equation (1) is the classic non-linear regularized long wave equation for 1, = =  

which can be used to describe the motion of transverse waves in shallow water [15]. Wang, 

et al. [16] studied a fractal regularized long-wave model for coast protection.  

There are many different ways to solve differential equations, such as the homotopy 

perturbation method [17-21], the variational iteration method [22], and others [23-27]. In this 

paper, the fractal non-linear regularized long wave equation is studied by the fractal variation-

al theory [28-30]. The variational theory is a very excellent analytical tool to dealing with 

complex non-linear problems, which has the advantages of giving the physical insight into the 

complex model and obtaining the best solution by the fractal trial function. Firstly, the fractal 

variational principle of the fractal non-linear regularized long wave equation is established by 

using the fractal semi-inverse method [31]. Secondly, the fractal solitary wave solution of the 

fractal non-linear regularized long wave equation is obtained by the fractal variational princi-

ple and the fractal two-scale transform method [32, 33], which is called the fractal variational 

transform method (FVTM). The fractal two-scale transform method is an efficient transform 

to convert a fractal model into its continuous partner, which has been widely employed in 

many fields [34-41], and can be extended to chaotic systems and control systems [42-45], the 

fractal chaotic systems and fractal control systems will be the future research frontiers. Final-

ly, a numerical example is given to illustrate the proposed method is efficient and simple.  

Fractal variational transform method 

Variational theory is an effective mathematical tool to non-linear problems, especial-

ly for integro-differential equations [46], two-point boundary value problems [47], and imag-

ing processing [48-51]. In this paper, we consider the following fractal differential equation 
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Step one. By using the fractal semi-inverse method, we construct the fractal varia-

tional principle of eq. (4): 
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where L is fractal Lagrange function. 

Step two. Using the fractal two-scale transform method, we assume [32, 33]: 

 T t=  (6) 

 X x=  (7) 
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Therefore, eq. (4) can be converted into its traditional partner: 
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So, the variational principle of eq. (8) is: 
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Step three. Employ the following transform: 

 X T  = +  (10) 

Therefore, eq. (8) can be rewritten into: 
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Equation (9) is written into the following form: 

 

0
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Step four. According to He’s variational method [31], we have the following solitary 

wave solutions: 

 ( ) sec ( )p h q  =  (13) 

 ( ) cosh( )p q  =  (14) 

 ( ) tanh( )p q  =  (15) 

 ( ) coth( )p q  =  (16) 

 
2( ) sec ( )p h q  =  (17) 

  

where p and q are constants. 

Substituting anyone solitary previous solution into eq. (12), obtain the following re-

lations [31]: 

 0
J

p


=


 (18) 

 0
J

q


=


 (19) 

By using eqs. (18) and (19), p and q can be easily determined. Therefore, the fractal 

solitary wave solution of eq. (1) is successfully obtained by eqs. (6) and (7). 
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Fractal variational principle for fractal  

regularized long wave equation 

Consider the following fractal non-linear regularized long wave equation: 
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First, eq. (20) can be written into: 
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Employ the following transformation: 

 
,( , ) ( )x t     =  (22) 

 
, t x     = +  (23) 

So, eq. (20) can be converted into the following equation: 
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Integrating eq. (24), obtains: 
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Second, we assume the fractal variational principle of eq. (25): 
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where L is the fractal Lagrange function. 

Using the fractal semi-inverse method [31], we have: 
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Hence, we have the fractal variational principle of eq. (25): 
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Fractal solitary wave solution for fractal  

regularized long wave equation 

Consider the fractal non-linear regularized long wave equation, which reads: 
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Apply the fractal two-scale transform method, and assume [32, 33]: 

 T t=  (30) 

 X x=  (31) 

So, we can obtain the partner of eq. (29): 

 
2

0b
T X X T

  


  
+ − =

   
 (32) 

Adopt the following transformation: 

 ( , ) ( )X T  =  (33) 

 T X  = +  (34) 

As the previous method, have: 
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Using the semi-inverse method, the variational principle of eq. (35): 
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Assume the solitary wave solution is: 

 
sec ( )p h q =

 (37) 

Substitute eq. (37) into eq. (36), and obtain: 
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We have: 
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By eqs. (39) and (40), obtain: 
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So, the solitary wave solution of eq. (32) is the following form: 
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Consequently, the fractal solitary wave solution of eq. (29) can be expressed: 
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Conclusion 

In this paper, we successfully use the fractal semi-inverse method to obtain the frac-

tal variational principle for the fractal non-linear regularized long wave equation, and its frac-

tal solitary wave solution is found by the fractal variational transform method. The numerical 

example shows the proposed method is efficient and simple. The proposed method can be 

employed to find fractal solitary wave solutions for different types of fractal non-linear mod-

els. 
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