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This paper proposes a numerical approach based on the fractional complex 
transform and the homotopy perturbation method to solving the space-time frac-
tional Benjamin-Bona-Mahony (mBBM) equation with Caputo fractional deriva-
tive. Approximated solutions with high accuracy are provided without lineariza-
tion or complicated computation. Numerical examples are given to illustrate the 
efficiency of this method.  
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Introduction 

Fractional differential equations (FDE) have wide applications in computer science 

and engineering areas, for examples, the fractal-fractional models for MEMS oscillator [1], 

thermal response of a porous concrete [2], non-linear vibration systems in a fractal space 

[3, 4], the population dynamics [5], and new dynamics economics [6]. Due to the non-local 

properties of fractional derivatives, FDE can be used to model the physical phenomenon with 

the instant time and the time history. In this paper, we will consider the following space-time 

fractional mBBM equation: 
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where u is a non-linear function of (x, t) with x, t > 0, a, b, and c are three given non-zero con-

stants. Here /u t    is the fractional derivative in Caputo sense which can be given by [7]: 
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with a constant 1n n−   . Notice that /u x    is also defined by Caputo fractional deriv-

ative of order a with respect to x. In real applications, the space-time fractional mBBM type 

equations have been widely applied to model the propagation of waves in fluid dynamics, for 

examples, the surface long waves in non-linear dispersive media, the hydromagnetic waves in 

cold plasma and the acoustic gravity waves in compressible fluids [8-10]. Especially, eq. (1) 

reduces to the mBBM equation when a = 1 [11, 12]. 
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Ege and Misirli [8] proposed the modified Kudryashov method for solving the 

space-time fractional mBBM equation and the space-time fractional potential Kadomtsev-Pet-

viashvili equation. In [9], the generalized Kudryashov method was applied to give the travel-

ing wave solutions of these fractional PDE. Reviewing these improvements, the numerical 

analysis of the space-time fractional mBBM type equations requires further research. The 

fractional complex transform (FCT) is a two-scale transformation with respect to space or 

time, which can be used to transform FDE [13, 14]. The homotopy perturbation method 

(HPM) proposed by He [15-17] has been applied for solving various linear or non-linear prob-

lems, and numerical examples were given to confirm its efficiency. Motivated by the fraction-

al complex transform and homotopy perturbation method, we will consider an efficient nu-

merical approach for (1). This approach is named as FCT-HPM. We illustrate the efficiency 

of FCT-HPM by solving an initial value problem associated with eq. (1). The numerical re-

sults are provided, and some conclusions are given. 

The FCT-HPM technique 

The FCT-HPM technique is a combination of the fractional complex transform and 

HPM. The main difficulty for solving the FDE lies in the fractional or fractal derivative aris-

ing from the fractional space or time. We first introduce the fractional complex transform to 

release this problem [13, 14]. In fact, the fractional complex transform is a two-scale method 

which can transform the fractional or fractal PDE to the ordinary PDE. Then the approximat-

ed solutions to the ODE can be provided by using homotopy perturbation method [15-18]. For 

clarity, we show this numerical approach below. 

Fractional complex transform  

Consider the following fractional PDE: 

 
2 2( , , , , , ) 0t x t xf u u u u u    =  (3) 

where [ ( , )]/( )tu u x t t  =    denotes the Caputo fractional derivative defined by eq. (2), the 

function ( , )u x t  is continuous (but not differentiable anywhere), and 0 1,   0 1.   

By applying the following fractional complex transform [13, 14]: 
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with non-zero constants p and q, the fractional derivatives in eq. (3) can be converted to the 

classical derivatives [13, 14]: 

 
( , )u x t u

p
Tt





 
=


 

 
( , )u x t u

q
Xx





 
=


 

Therefore, we can rewrite the fractional differential eq. (3) as an ordinary PDE 

which can be solved by the HPM [15-17]. We remark that T and X can be seen as two varia-

bles on a large scale, compared with the variables t and x on a small scale. The geometry ex-

planation of FCT was given in [19-25]. 
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Homotopy perturbation method 

We consider the following non-linear differential equation: 

 ( ) ( ) 0,A u f r− =  Ωr   (4) 

with boundary conditions: 
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where A is a general differential operator, B – a boundary operator, u – a known analytic func-

tion, and Γ – the boundary of the domain. 

We can divide the operator A into the linear and non-linear parts, which are denoted 

by L and N, respectively. Then eq. (4) can be rewritten: 

 ( ) ( ) ( ) 0L u N u f r+ − =   

The HPM is to construct a homotopy ( , )v r p : [0,1] R →  which satisfies [23]: 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0H v p p L v L u p A v f r= − − + − =  (6) 

or 

 0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r= − + + − =  (7) 

where Γr  and [0,1]p  is an embedding parameter, u0 is an initial approximation of eq. 

(4), which satisfies the boundary conditions, eq. (5). 

Assume that the solution of eq. (6) can be expressed as a power series in p: 
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Then the approximate solution of eq. (4) can be given by: 
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Analysis of space-time fractional mBBM equation 

Consider the space-time fractional mBBM eq. (1) with the following initial condi-

tion: 
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where k is an arbitrary constant. We remark that the exact solution to the mBBM equation 

with a = 1 is given by [12]: 
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By the fractional complex transform with: 
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it follows that: 
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Then eq. (1) can be rewritten as the following ordinary PDE: 

 
2 0T X X XXTu au bu u cu+ + − =  (10) 

Here the initial condition for eq. (10) is given by: 
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By HPM [15-17], we construct the homotopy for u satisfying the following equa-

tion: 
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with 0 ( ,0)u u X=  given by eq. (11).  

Assume that the approximations to the previous system can be formulated: 
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Substituting eq. (13) into eq. (12), and collecting the coefficients of p term, we have: 
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By solving the previous systems, we have the approximated solutions: 
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Recalling the transformation (9), we have the second order approximation to eq. (1). 

The rest approximations can be given in a similar manner. 

Numerical results 

In this section, we illustrate the efficiency of FCT-HPM for the initial value problem 

associated with (1). We set k = 0.2, a = 1, b = –1 and c = 1 in this example. 

We first consider the numerical analysis of the classical mBBM equation with 

1. =  For comparison, we also provide the third order approximation 3û  by FCT-HPM. Fig-

ure 1 shows the compared results of 2û  and 3û  given by FCT-HPM and the exact solution u(x, 

t). The absolute error curves for the numerical approximations are plotted in fig. 2. Figure 2 

shows that the approximated solutions agree well with the exact solution. We remark that the 

accuracy of the approximations by FCT-HPM can be improved by considering higher order 

approximations. 

 

Figure 1. Numerical comparisons for the classical mBBM eq. (1) (a) 2
ˆ ,u (b) 3

ˆ ,u and (c) uexact 

We then test the numerical behavior of the approximated solutions for the fractional 

mBBM equation with different a. Figures 3(a) and 3(b) present the numerical results of 2û  

and 3û  for (1) with 0.3, =  respectively. Numerical results of the approximations for (1) 

with 0.5 =  and 0.8 =  are presented in figs. 4 and 5, respectively. Furthermore, we also 

plot the numerical curves of 3û  at x = 0 and x = 5 with different   in figs. 6(a) and 6(b), re-

spectively. The propagation direction of the wave tends to be parallel to the x-axis when the 

value of a becomes small. By figs. 3-6, we can conclude that FCT-HPM can efficiently give 

the approximations without any discretization or restrict assumptions.  

 

Figure 2. Errors of the approximations the classical mBBM eq. (1); (a) 2û  and (b) 3û  
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Figure 3. Numerical approximations for eq. (1) with a = 0.3; (a) 2û  and (b) 3û  

 

Figure 4. Numerical approximations for eq. (1) with a = 0.5; (a) 2û  and (b) 3û  

 

Figure 5. Numerical approximations for eq. (1) with a = 0.8; (a) 2û  and (b) 3û  

 

Figure 6. Numerical behavior of 3û  with different α; (a) x = 0 and (b) x = 5. 1 – α = 0.1, 2 – α = 0.3,  
3 – α = 0.5, and 4 – α = 0.8 
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Conclusion 

This paper focused on the numerical analysis of the space-time fractional mBBM 

equation with Caputo fractional derivative. An initial value problem of the fractional mBBM 

equation was solved by using FCT-HPM. Numerical approximations were given without 

complicated computation, and the technology has potential applications in medical imaging 

[26, 27], the fractal diffusion [28], the fractal solitary waves [29, 30] and fractal-fractional 

problems [24, 25, 31, 32]. In view of the efficiency of FCT-HPM, we will consider this meth-

od for other fractional differential equations in our future work. 
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