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When strength and stress variables follow the exponential Frechet distribution 
with different shape parameters and common scale parameters, the multicompo-
nent stress-strength reliability model of an s-out-of-k system is studied in this pa-
per. Based on samples from stress and strength distributions, the maximum like-
lihood estimation of the model parameters is obtained. The asymptotic confidence 
interval for the system reliability is also calculated. The comparison of the relia-
bility estimates based on small sample is given by Monte-Carlo simulation. 
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Introduction 

The exponentiated Frechet (EF) distribution as an exponential distribution was pro-

posed by Nadarajah and Kotz [1]. It is an extension of the standard Frechet distribution. The 

cumulative distribution function (CDF) and probability density function (PDF) of the EF dis-

tribution be given, respectively: 
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where 0   is the shape parameter, 0   and 0   are scale parameters. This distribution 

is denoted as EF ( , , ).    

Many applications of the EF distribution were discussed [2]. For example, tempera-

ture in thermal science, queues in supermarkets, sea current, wind speed, network design, syn-

thetic membranes, earthquakes and financial matters. The moment of order statistics was cal-

culated for independent non-identically distributed EF random variables by Jamjoom and Al-
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Saiary [3]. The acceptance sampling plan based on censoring life tests for EF distribution was 

discussed by Al-Nasser and Al-Omari [4]. When the life time of an item follows EF distribu-

tion, a two-stage group acceptance sampling plan was proposed for life tests under censoring 

data by Gadde et al. [5]. The basic theory and method of multicomponent stress-strength 

model were given by Bhattacharyya et al. [6]. In this paper, the reliability estimation of multi-

component stress-intensity model is considered when both strength and stress variables follow 

EF distributions. 

For the stress-strength model, the estimation of the reliability ( )R P Y X=  of the 

components or systems is the basic problem in reliability statistics theory. It is a measure of 

component reliability when the random strength X is limited by random stress Y. For a multi-

component system, the random strengths X1, X2,   , Xk of k components are independently and 

identically distributed random variables. In this paper, it is assumed that all components of the 

system are subjected to a common random stress Y , and its CDF is G(y). The system is indi-

cated survival only if at least s  out of (1 )k s k   strengths exceed the stress. Let the random 

variables 1 2, ,  ,...,  kY X X X  be independent and the common CDF of 1 2,  ,... , kX X X be F(x). The 

reliability of a multicomponent stress-strength model can be obtained eq. (3) given in [5]: 

 ( ),  [1 ( )] [ ( )]  d ( )
k

i k i
S K

i s

k
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−

= −
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(3) 

The model has been widely applied to reliability problems in many practical applica-

tions. Various researches have been done on this model under different probability distribu-

tions of stress and strength. Norman et al. [7] studied Bayesian estimation of reliability of 

multicomponent stress-strength model with strength and stress being independence and expo-

nential distribution. Pandey and Borhan [8] studied the estimation of the reliability when the 

stress-strength variables obey the Burr distribution. Kizilaslan and Nadar [9] discussed classi-

cal and Bayesian estimations of model reliability when the stress-strength variables follow the 

Weibull distribution. Based on progressively censored sample, reliability estimation of this 

model was discussed under Kumaraswamy distribution and unit Gompertz distribution in 

[10, 11]. For more alternative stress and strength distributions and incomplete sample cases, 

the reliability analysis of the model can be found in [12-19]. 

The main attempt of this paper is to obtain estimates of Rs,k when the stress and 
strength are independent and both obey the EF distribution. 

Maximum likelihood estimator of Rs,k 

Let EF( , , )X     and EF( , , ),Y     the parameters , ,    and   are un-

known. Here, X and Y are independent random variables. By using eq. (3), the reliability of 

multicomponent stress-strength model for EF distribution is expressed:  
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Let 1 exp[ ( / ) ] ,t x  = − −  the eq. (4) is reduced to the following form: 
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Letting 
/ ,u t = then: 
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where /  =  and ( , )B a b is the beta function. Since k and i are integers, we get: 
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where Rs,k is the reliability of the multicomponent stress-strength model. The , ,   ,   and 

Rs,k need to be estimated. In this paper, the model parameters are estimated by ML method，
and an estimate of Rs,k is obtained using eq. (5). The estimation method is explained. 

In order to get MLE of Rs,k, we first get the MSE of a and β. Suppose

1 2  ( , , , )j j n jX X X is a strength sample from ~ ( , , ), 1,2, , ,jX EF j k   =  and 

1 2( , , , )nY Y Y  is a stress sample from ( , , ).Y EF     The likelihood function based on the 

samples is that: 

 ( 1) ( 1)

1 1

( , , , | data) ( ) ( ) ·
n k

k n k n kn n
ij i

i j

L f x g y        + +

= =

=
 

= 
  

   

 

1

( 1) ( 1)

1 1 11 1

1

11

· 1 exp exp ·

· 1 exp exp

n k nn k

iij
i j iij iji j

n n

i iii

x y
x x

y y


 

 


 

 

 

−

− + − +

= = == =

−

==

               − − −                        

          − − −                    




  (6)

 

The log-likelihood function is that: 
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(7)

 

The MLE of the model parameters are denoted as ˆ ˆˆ , , ,   and ˆ ,  respectively. By 

differentiating (7) with respect to , , ,    and , then ˆ ˆˆ , , ,   and ̂ can be obtained from the 

following likelihood equations: 
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From ˆˆ  and ,   we obtain the MLE of Rs,k: 

 

1

,

1

!
ˆ

!

ˆ ˆ( )
k

i s

k

s k

j

k

i
R j 

−

= =

=
 

+ 
  

   (12) 

where ˆˆ ˆ/ .  =  

Considering the asymptotical confidence interval for ,
ˆ ,s kR  we calculate firstly as-

ymptotic variances of ̂  and ̂  which are given, respectively: 
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Because ,
ˆ

s kR  is a function of ˆˆ  and   , by using the asymptotic normality theorem 

and delta method, we can get the asymptotic variance of ,
ˆ .s kR  
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Hence, form eq. (13), the asymptotic variance (AV) can be obtained. 

To obtain derivatives of ,
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s kR  for (s, k) = (1, 4) and (2, 5), we have: 
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Therefore: 
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Therefore, according to eq. (13), we obtain: 
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a 100(1 – r)  confidence interval for Rs,k is: 
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where zr/2 is the upper r/2th percentile of standard normal distribution. 

The 95% asymptotic confidence interval of ,s kR  can be obtained: 
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The asymptotic 95% confidence interval for 1,4R is: 
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The 95% asymptotic confidence interval for R2,5 is: 
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Simulation study  

In this section, using the R software, Monte-Carlo simulation method is used to 

compare the biases and mean square error under different sample sizes. Suppose ( , )
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All results are obtained through N = 800 Monte-Carlo simulations. In simulation 

settings, different sample sizes n are 50, 60, 80, and 110, respectively, and different parameter
( , , , )    are (0.8, 1.5, 2, 3), (0.8, 1.5, 2, 2.5) and (0.8, 1.5, 3, 2), respectively, Under the 

three cases of ( , , , )     when (s,k) = (1, 4), ,
ˆ

s kR
 
is 0.88918,0.85291, and 0.68442, respec-

tively. When (s,k) = (2, 5), ,
ˆ

s kR  is 0.78688,0.73523 , and 0.53591, respectively. The results 

are given in tab. 1. 

Table 1. Bias, MSE and asymptotic confidence of ˆ s,kR  under different cases 

( , , , )     (s, k) Rs,k  Bias MSE Asymptotic confidence 

(0.8, 1.5, 2, 3) 

(1, 4) 0.88918 

50 0.03988 0.00219 (0.87395, 0.96431) 

60 0.03679 0.00186 (0.88860, 0.96526) 

80 0.03867 0.00180 (0.88778, 0.95710) 

110 0.03888 0.00178 (0.88116, 0.94522) 

(2, 5) 0.78688 

50 0.06290 0.00557 (0.75422, 0.90108) 

60 0.06183 0.00535 (0.72071, 0.86772) 

80 0.06359 0.00496 (0.69236, 0.82877) 

110 0.06202 0.00461 (0.75180, 0.85759) 

(0.8, 1.5, 2, 2.5) 

(1, 4) 0.85291 

50 0.02864 0.00198 (0.79292, 0.92406) 

60 0.02667 0.00164 (0.79075, 0.91364) 

80 0.02850 0.00150 (0.83422, 0.92733) 

110 0.02931 0.00135 (0.85209, 0.92751) 

(2, 5) 0.73523 

50 0.04203 0.00414 (0.68797, 0.85697) 

60 0.04031 0.00348 (0.64112, 0.80745) 

80 0.04115 0.00297 (0.70898, 0.84166) 
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Table 1. Continuation 

( , , , )     (s, k) Rs,k  Bias MSE Asymptotic confidence 

   110 0.04311 0.00279 (0.66291, 0.78573) 

(0.8, 1.5, 3, 2) 

(1, 4) 0.68442 

50 –0.07007 0.00734 (0.54757, 0.74314) 

60 –0.07002 0.00717 (0.54841, 0.72753) 

80 –0.06920 0.00643 (0.54233, 0.68876) 

110 –0.06801 0.00547 (0.57930, 0.71116) 

(2, 5) 0.53591 

50 –0.06434 0.00625 (0.40091, 0.57443) 

60 –0.06389 0.00615 (0.42739, 0.60391) 

80 –0.06720 0.00595 (0.42852, 0.58045) 

110 –0.06860 0.00576 (0.42087, 0.57875) 

Conclusion 

In this paper, the reliability of multicomponent stress-strength model is studied when 

the stress and strength variables obey the exponentiated Frechet distribution. We have ob-

tained MSE of model parameters and estimated asymptotic confidence interval for reliability 

under the multicomponent stress-strength model. It is easy to see from the tab. 1 that the vari-

ance of reliability estimator decreases as expected as the sample size increases. The results 

show that the proposed method can be applied to practical reliability problems in the fields of 

thermal science [20], micro-electromechanical systems [21, 22], rotors [23, 24], vibration sys-

tems [25, 26], and the milk process [27].  
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