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The joint-distribution function between variables plays an important role in 
reliability analysis. A method is proposed for constructing the function using a 
neural network, which is used to construct a copula model under arbitrarily 
measured data, including the input and output values of the neural network using 
an empirical cumulative distribution. Three traditional copula function models 
are constructed based on the Kendall rank-correlation coefficients. Based on the 
Euclidean distance method, the neural network copula and three copula function 
models are compared.  
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Introduction 

Within structural reliability analysis, there are generally multiple types of related 

variables. For examples, the standardised foundation pile payloads [1], and permanent dis-

placement of a structure during earthquake [2], and weld fatigue [3]. The distribution of these 

parameters is often non-normal, and when computing the structural uncertainty, the joint dis-

tribution function of each variable must be known, whereas it requires a large amount of ex-

perimental data to obtain the joint distribution function of a given set of variables, which is 

difficult to realise in practical engineering. For this reason, the correlation between variables 

is often not considered when computing the structural reliability in an engineering project, 

which, has, however, caused inaccurate results. Therefore, it is extremely important to analyse 

the structural uncertainty in a more reasonable way by considering the correlation between 

variables. The key point is how to create a joint distribution function with a limited amount of 

sample information. 

In recent years, the copula function has provided a new way to establish a joint dis-

tribution function between variables [4]. The copula function was first proposed by Sklar [5] 

in 1959. Sklar [5] proposed the idea that any multivariate joint distribution function can be di-

vided into a corresponding marginal distribution as well as a copula function. This copula 

function determines the correlation between the variables, including the size of the correlation 

factor between variables and the types of correlation structures. The copula formula has been 

successfully applied to finance, hydrology, geotechnical engineering, and mechanics [6-8]. 

Currently, however, there are a limited number of categories of copula functions, each of 
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which has only one or two adjustable parameters, making it difficult to apply to the diverse 

demands of arbitrary correlations. 

Artificial neural networks can learn to map input and output variables, and can ap-

proach any functions. Much literature has indicated that a three-layer back propagation neural 

network can fit any non-linear problems with limited training samples. This satisfies the con-

ditions for constructing any correlation copula functions. To this end, in this study, copula 

functions for multiple variables with a given sample data set are established.  

Theoretical foundation of copula function 

A copula function is a type of joint distribution functions composed of a collection 

of variable marginal distributions. Under a situation with n dimensions, the copula function 

can be defined as an n-dimensional joint distribution function in the space [0, 1]n, in which the 

marginal distribution of each variable is uniformly distributed within the interval [0, 1] [4]: 

 1 2 1 1 2 2 1 2( , , , ) [ ( ), ( ), , ( ); ] ( , , , ; )n n n nF x x x C F x F x F x C u u u = =   (1) 

Based on this definition, 1 2( , , , )nF x x x  is the joint distribution function of the var-

iables 1 2, , , nx x x ; ( )( 1,2, )i i iu F x i n= =  is the marginal distribution function of the varia-

ble ix ; ( )C  is a copula function; and θ is the correlation parameter of the copula function. 

Deriving the equation in function (1) yields the joint probability density function: 
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Within this function, ( )i if x is the marginal probability density function of the varia-

bles 1 2, , , nx x x ; and ( )c  is the density function of the copula function. Therefore, if one al-

ready knows the marginal distribution and copula function of the variables, one can construct 

the variable joint distribution function and joint probability density function through eqs. (1) 

and (2). 

Estimating the copula function’s correlation parameter 1 2( , , , ; )nC u u u   is an im-

portant stage of establishing the copula function. The correlation parameter, θ, indicates the 

degree of correlation between the variables and is generally obtained from the Kendall rank 

correlation coefficient [4]. This type of estimation methods for parameters related to the copu-

la function is unrelated to the marginal distribution of the variables and is thus referred to as a 

nonparametric method. 

For the 2-D variables x1 and x2, the relationship between the Kendall rank correla-

tion coefficient τ and the copula function correlation coefficient, θ, is [4]: 

 

1 1

1 2 1 2

0 0

= 4 ( , ; )d ( , ; ) 1C u u C u u   −    (3) 

Different categories of copula functions describe the variable correlation in different 

ways, namely, they have different structures of correlation. Table 1 shows three such distinct 

types of copula functions. For this reason, quantitatively evaluating which copula function can 

be considered as the most optimal one is a central problem. There are several methods used to 

discern the optimal copula function, such as the Euclidean distance method, Akaike infor-

mation criterion, and Bayesian information criterion. In this study, the Euclidean distance 

method is used to discern the optimal copula function, in which the copula function with the 
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lowest Euclidean distance value has the most optimal fitting variable correlation structure. 

The Euclidean distance method for a distribution model with n dimensions can be expressed: 

 2
1 2

1

1
[ ( , , , ) ( ; )]

p

j n j 1 2 n

j

e F x x x C u ,u , ,u
p


=

= −   (4) 

Within this function, p is the number of test sample points. 

Table 1. Copula function types 

Method for establishing a copula function model  

based on neural networks 

A correlation between variables within engineering problems is often extremely 

complicated. A traditional copula function with a small number of parameters is difficult to 

apply in accurately constructing a correlation model. The copula function is a joint distribu-

tion function that takes the marginal distributions of various correlated variables as its own 

variables. It maps the relationship between the marginal and joint distributions. If neural net-

works can map any non-linear functions, they have the potential to become an accurate meth-

od for the modelling of copula functions. To this end, this neural network methodology is 

used in the present study to establish a copula correlation model for any set of measured data. 

Determining structure of neural network  

The first step in establishing a methodology for modelling the copula functions 

based on a neural network is to determine the network structure. Suppose we are researching 

the correlation between random variables in n dimensions, based on the definition of the 

copula function, the input of the problem is the marginal distribution of the n-dimensional 

random variables, and its output is the joint distribution of those random variables. Based on 

this, the neural network will have n input layer units and 1 output layer unit. Based on the 

principle of structural risk minimisation, one should select as few network parameters as 

possible. Therefore, a single hidden layer network structure with the least number of units 

necessary to allow network training convergence is chosen. A diagram of the network struc-

ture can be seen below in fig. 1, and the functional relationship between the network input 

and output is. 
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where iu is the ith unit input variable of the neural 

network input layer, y – the unit variable of the net-

work output layer, jik – the linked weighted value 

between the ith unit of the input layer and the jth unit 

of the hidden layer, jb – the threshold value of the jth 

unit of the hidden layer, and jw – the linked 

weighted value between the jth unit of the hidden 

layer and the unit of the output layer. 

Constructing neural network trained sample set 

When conducting a correlation study, one 

must have a measured data sample set that reflects 

the correlation between variables. In the case of en-

gineering problems, a sample of the measured data points that contain the correlation infor-

mation is obtained by collecting various types of experimental data. According to the defini-

tion of the copula function, the neural network input should be the marginal cumulative distri-

butions of each random variable, and its output should be the joint cumulative distribution of 

the random input variables. Understanding how to use available measured sample data to con-

struct a trained sample set is a key step for using a neural network to establish copula function 

models. This step requires resolving the question of how to change an observed sample set in-

to a trained sample set. This paper calculates the marginal empirical cumulative distribution 

and joint empirical cumulative distribution of random variables from various actual sample 

points, with the empirical cumulative distribution function as the foundation for such calcula-

tions. This is the process by which the neural network trained sample set is obtained. 

Suppose there are random variables 1 2( , , , )i i i
nx x x  in n dimensions. Among them, 

1,2, ,i N= are the numbers of measured sample points. Take each dimension in an n-dimen-

sional space and divide it into N number subspaces based on the position of each sample point 

in the given dimension. The process by which the aforementioned observed sample values are 

utilised to determine the marginal empirical cumulative distribution and joint empirical cumu-

lative distribution of each random variable at the sample points is as follows. 

According to the definition of an empirical cumulative distribution, the ith random 

variable’s marginal empirical cumulative distribution at the position of the jth sample point
j

ix

is: 

 
1

1
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m
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The joint empirical cumulative distribution of each random variable at the position 

of the jth sample point 1 2( , , , )i i i
nx x x is: 
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where I(x) is the characteristic function, and is represented: 
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Figure 1. Three-layer back propagation 
network structure 
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From this, the following can be obtained: The corresponding neural network training 

sample input for the jth sample point 1 2( , , , )
j j j

nx x x  is 1 21 2{ ( ), ( ), , ( )},
j j j

n nF x F x F x with an 

output of 1 2( , , , )
j j j

nF x x x 1,2, , .j N=  In total, there are N trained samples. 

Furthermore, according to the boundary conditions of the copula function 

1 1 1( , , ,0, , , ) 0,NN i i nC u u u u− + =  the constructed input is 1 1 1{ , , ,0, , , },i i nu u u u− +  with the 

output being the trained sample of {0}. 

Neural network training 

For any multi-dimensional question where 2,n   after obtaining the alternative da-

taset, a certain proportion of the data is randomly selected from the set to serve as a training 

sample set and allow the remaining data to serve as a test sample set. At this point, the train-

ing sample set can be utilised to train the neural network. Currently, the training algorithm is 

well developed. Further details can be found in a previous study [9].  

After the network has converged, a set of fixed network parameters * * *, ,j ji jw k b  is ob-

tained. At this point, the neural network is already a mathematical model that can fit the rela-

tionship between the input and output of the training sample. A more detailed expression of 

this model can be written: 

 * * *

1 1

( )
m n

j ji i i j

j i

y w f k F x b
= =
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    (7) 

Density function of neural network 

As can be understood from the definition of the copula function, the neural network 

model shown in eq. (6) is an approximation of the joint cumulative distribution function of the 

n-dimensional random variables 1 2( , , , )nx x x rom the measured sample data copula func-

tion, as shown in eq. (1). This is demonstrated in: 

 1 2 1 1 2 2( , , , ) [ ( ), ( ), , ( )]n NN n ny F x x x C F x F x F x= =  (8) 

Based on the same reasoning, the sample point set 1[ , ( )]k k
i ix F x  ( 1,2, , )k N=  can 

be used to fit the marginal cumulative distribution of each variable ix . 

According to copula-related theory, the joint probability density function is: 
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Equation (9) is the joint probability density function obtained from the neural net-

work methodology.  

The total area integral of the above joint probability density function is taken [10], at 

a value of L, and the joint probability density function obtained after normalisation is: 

 * ( ) * *
1 2

1 1 1

1
( , , , ) ( )

nm n
n

n j ji i j i i

j i i

f x x x W f k x b f x
L = = =

  
= +  

   
    (12) 

Examples of numerical simulation 

Suppose the random variables (X, Y) have the following joint probability density 

function: 

 

1

s * *( )
1 2 1 1 2 2( , ) ( * *); * ( ); * ( )

x sy se ef x y e s x y x x y y     
− −− += − + = − = −   (13) 

Within this function, 1 2 1 2= = 1; 0; 2.s   = = =  Based on the apparent correla-

tion between variables, in this example calculation, the Plackett copula, Frank copula, and 

Gaussian copula functions are chosen to construct the 2-D joint distribution functions for the 

variables X and Y. 

To confirm that the method proposed by this paper can be applied to a small sample 

size, N = 20 and N = 50 were selected when fitting the model. Because the Kendall rank cor-

relation coefficient considers not only the linear correlation between variables, but also the 

non-linear correlation between variables, it was used to obtain the value of the correlation pa-

rameter, θ, for each copula function, which can be seen in tab. 2 [11]. 

Table 2. Value of correlation parameter, θ, in example  

Copula function Plackett copula Frank copula Gaussian copula 

θ value 
N = 20 12.5018 6.0309 0.7244 

N = 50 10.1082 5.3635 0.6832 

 
The use of the copula parameters shown in tab. 2, as well as the marginal distribu-

tions of random variables X and Y, yields three types of copula functions. Therefore, we will 

take N = 20 as an example for detailed analysis, and the analysis process of N = 50 will not be 

described. The Euclidean distance calculation results of each of copula function described 

above are shown in tab. 3. 

After this, the neural network methodology proposed herein was utilised to carry out 

an analysis. A neural network Copula function with two input layer units and one output layer 

unit was constructed. This paper utilised a neural network structure with a single hidden layer. 

The unit number in the hidden layer was set to m = 8 based on the principle of parameter min-

imisation. Because, logsig function can be written: 

 
1

logsig( )
1 exp( )

t
t

=
+

 (14) 

where t input layer variable of the neural network. So, the logsig function was selected as the 

transfer function for both the hidden and output layers in this article.  
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Applying the Levenberg-Marquardt training algorithm [12], the number of training 

epochs was set to 1500 epochs. When the training proceeded to the 1133th epoch, the default 

precision had already met the required level and the training stopped. The mean squared error 

arriving at a level of 2.464·10–4. Figure 2 shows a scatterplot of the empirical cumulative dis-

tribution of the trained sample points 1 2( , )j jx x  and the empirical cumulative distribution of 

the copula neural network. It can be seen from fig. 2 that the empirical cumulative distribution 

of the simulated data encapsulates the empirical cumulative distribution of the original data 

relatively well. Therefore, the data obtained from the joint empirical cumulative distribution 

function simulation produced by the neural network copula function fits the original data in 

terms of both the shape and trend. 

The test sample set was substituted into a well-established neural network copula 

model. Its residual error after testing is as shown in fig. 3. The Euclidean distance is used 

simultaneously for identification, which can be seen in tab. 4.  

  

Figure 2. Copula neural network and empirical 
cumulative distribution of original samples  

Figure 3. Results of test sample in example 

Figure 3 clearly shows that the training results of the neural network copula basical-

ly fit the actual results. The errors of the test sample after copula training of the neural net-

work were mostly quite small, although there were some sample points that had comparative-

ly large errors. There were primarily two factors causing large errors. The first reason why the 

errors were large was because the training results had a relatively small value. As the second 

reason, because the training of the marginal points of the neural network was comparatively 

poor, and because the selection of the test sample was random, a portion of the points selected 

were marginal points that increased the error. 

Table 3. The Euclidean distance discrimination results of example  

Sample size N  20 50 

Plackett copula 0.0278 0.0191 

Frank copula 0.0230 0.0207 

Gaussian copula 0.0247 0.0154 

Copula neural network 0.0222 0.0177 
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As shown in tab. 3, When N = 20 that the results of the Euclidean distance differen-

tiation for the neural network copula function were much more optimal than those of the other 

three copula functions. When N = 50 that the results of the Euclidean distance differentiation 

for the neural network copula function were not much different from the other three copula 

functions. This indicates that the neural network copula model can effectively represent a 2-D 

distribution model with a correlation. When utilising this methodology to establish a 2-D joint 

distribution model, there is no need to estimate the type of distribution to which each variable 

is subordinated. In this way, the neural network copula model provides a new methodology 

for establishing a 2-D joint distribution model. 

Conclusion 

When conducting a structural reliability analysis, one must already be generally 

aware of the correlation information between variables, such as the joint density function or 

joint distribution function of the variables. The neural network copula method applied in this 

study produces a joint distribution function of the correlated variables. Through a comparison 

of this method with three traditional copula functions in terms of the Euclidean distance, it is 

clear that the proposed method has an obvious advantage in terms of precision. Compared 

with traditional algorithms, this methodology does not require selecting an optimal copula 

model from the numerous existing copula functions, and thus greatly reduces the required 

workload. The present technology can be extended to other neural network [13-16]. 
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