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The convection-diffusion equation describes a convection and diffusion process, 
which is the cornerstone of electrochemistry. The process always takes place in a 
porous medium or on an uneven boundary, and an abnormal diffusion occurs, 
which will lead to deviations in prediction of the convection-diffusion process. To 
overcome the problem, a fractal modification is suggested to deal with the “ab-
normal” problem, and a 2-D steady-state convection-diffusion equation with 
fractal derivatives in the fractal space is established. Furthermore, its fractal 
variational principle is obtained by the semi-inverse method. The fractal varia-
tional formula can not only provide the conservation law in the fractal space in 
the form of energy, but also give the possible solution structure of the equation.  
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Introduction  

The convection-diffusion process arises in many natural phenomena, and has a wide 

range of applications in practical problems, such as chemical reaction process [1], miscible 

displacement in soils [2], the contaminant transport [3], migration of heavy metals in soil [4], 

liquid droplet’s ignition process [5], electron’s propagation in a semiconductor [6], sediment 

transport [7, 8], and electrochemical reaction in electrodes [9, 10].  

The convection-diffusion equation can be written: 
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where C is the concentration of the solute, D – the hydrodynamic dispersion coefficient, and 

u – the penetration rate of solution. When the solution is in the uniform seepage field of satu-

rated porous media, D and u are real constants. After some time, the concentration will not 

change with the time ( / 0),C T  =  and it is called the steady-state convection-diffusion pro-

cess. Considering the 2-D case, the equation can be expressed: 
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in which D1 and D2 are the hydrodynamic dispersion coefficient in the X- and Y-directions, u1 
and u2 – the penetration rate of solution in the X- and Y-directions. Equation (2) was widely 

studied in various methods, for example, Stynes discussed a series of steady-state convection-

diffusion processes [11, 12]. Kennedy and O’Connor used transmission line modeling method 

to analyze steady-state convection-diffusion equations [13]. In general, 2-D and 3-D solutions 

can be obtained by numerical methods, but analytical solutions are more popular in practical 

applications. In 2011, analytical solutions for some special conditions were appeared, for ex-

amples, Chen et al. [14] obtained analytical solution for a spherical coordinate system. Yadav 

et al. [15] used the variable coordinate transformation to find an analytical solution of the 2-D 

convection-diffusion equation.  

The convection-diffusion process takes place in an uneven boundary or in a porous 

medium, which causes abnormal diffusion. In the previous literature, homogenization and 

pseudo-homogenization had to be assumed for a porous medium, but it can not deal with the 

abnormal diffusion.  

In recent years, much literature showed that such abnormal diffusion can be effec-

tively modeled by the fractal calculus [16-18]. Its key point is to use fractional derivatives in-

stead of integer derivatives. Therefore, smooth space (X, Y) should be transformed into fractal 

space (Xα, Yβ), where α and β are the fractal dimensions. Under the fractal space, the 2-D 

steady-state convection-diffusion equations can be modified: 
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where /c X   and /c Y   are the fractal derivative defined [19, 20]: 
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We have: 
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where X and Y  are the smallest spatial scale for discontinuous boundaries scales for ob-

serving the concentration. When the spatial scale of the two directions is larger than X and
,Y  the problem studied at this time becomes the traditional smooth homogeneous solute 

transport problem.  

The fractal differential models have become useful tools for various discontinuous 

problems, for examples, porous concrete [21, 22], composites [23], fractal Toda oscillator 

[24], fractal MEMS oscillator [25], fractal vibration systems [26-29], and fractal solitary 

waves [30-34].  
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Variation principle  

The variational principle is an energy method for describing motion, which has a 

wide range of applications and can solve non-linear problems well [35-37]. Wang et al. [38] 

established the variational principle of traveling waves in fractal space by using the semi-

inversion method, and now various fractal variational principles were appeared, for examples, 

fractal variational principle for solitary waves [39-44], fractal optimization [45], fractal Evans 

variational principle [46], and variational-based approximate methods are effective for com-

plex problems [47-52].  

Based on the basic properties of fractal derivatives, we give the following two-scale 

transformation [19, 20]. Let: 

 x X =  (7) 

 y Y =  (8) 

Equation (3) can be written: 
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Then, we write eq. (9) in the following conservative form, which is more convenient 

to apply the semi-inverse method [36] to establish the variational formula of the equation: 

 1 1 2 2( ) ( ) 0x x y yD C u C D C u C− + − =  (10) 

According to eq. (10), we define an auxiliary function ϕ that satisfies: 

 2 2( )x yD C u C = − −  (11) 

 1 1y xD C u C = −  (12) 

Through the semi-inverse method [36], we establish the following variational formu-

la: 

 ( , ) ( , , , , , , , , , , , )d dx y xx yy xy x y xx yy xyJ C L C C C C C C x y      =   (13) 

where L is the trial-Lagrange function. Then, we set the trial-Lagrange function to the follow-

ing form: 

 1 1 2 2( ) ( )x x y yL D C u C D C u C F = − + − +  (14) 

where F is an unknown undetermined function of C and/or   and/or their derivatives. When F 

is independent of  and its derivatives, eq. (10) is the stationary condition that  must satisfy.  

The stationary condition about C can be expressed: 
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in which /F C   is called He’s variational derivative defined [36]: 
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Under eqs. (11) and (12), we have: 

 1 2 1 2 1 2 2 2 1 1( ) ( )x y xx yy y x

F
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= + + + = − − + − −  

 1 2 2 2 1 1 2 1 1 2( ) ( ) 2 2y x x y x yD D C u C D D C u C u D c u D c− − + − = −  (17) 

From eq. (17), it is difficult to find F. Therefore, we need to make the following 

modifications to the trial-Lagrange function [36]: 

 1 1 2 2( ) ( )x x x y y yL A D C u C B D C u C F   = − + + − +  (18) 

In eq. (8), A and B are unknown constants. The stationary conditions are given by: 
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From eqs. (19) and (20), we have: 
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 1 1 2 2( ) (1 2 )( )x x y yA D C u C B D C u C= − + − −  (22) 

Let: 

 0
F


=  (23) 

we have: 

 2 1A B+ =  (24) 

In order to get the undetermined function F, we need let the coefficient of Cx and Cy 

in eq. (21) be equal to zero. We know 1A = − , then 1.B =  So, we have: 

 1 2 1 22 2 xy

F
u u C D D C
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= − +  (25) 

From eq. (25), we can determine that F is uniquely identified: 

 2
1 2 1 2 x yF u u C D D C C= − −  (26) 
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Therefore, we have successfully obtained the variational formula of eq. (18): 

2
1 1 2 2 1 2 1 2( , ) { ( ) ( ) }d dx x x y y y x yJ C D C u C D C u C u u C D D C C x y    = − − + + − − −  (27) 

Proof. According to the mentioned variational principle, the Euler-Lagrange equa-

tion of eq. (27) can be given in the following form: 

 1 2 1 2 1 2 1 22 2 0x y xx yy xyu u D D u u C D D C   − + − − + =  (28) 

 1 1 2 2( ) ( ) 0x x y yD C u C D C u C− + − =  (29) 

Compared with the previous constraints, it is obvious that eqs. (28) and (29) are 

equivalent to eqs. (10) and (19), respectively. 

In the fractal space (Xα, Yα), the variational formulation can be expressed in the 
following form:  
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Conclusion 

In the problem of discontinuous media, fractal derivatives have a wide range of ap-

plications. In this paper, we establish a variational formulation for 2-D steady-state convec-

tion-diffusion equation in the fractal space (Xα, Yβ) by the semi-inverse method. The varia-

tional principle can not only be used to construct the conservation law and solutions structure, 

but also provide a theoretical basis for the analysis and numerical methods. 
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