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With the help of a new fractal derivative, a fractal model for variable coefficients 
and highly non-linear Schrödinger equations on a non-smooth boundary are ac-
quired. The variational principles of the fractal variable coefficients and highly 
non-linear Schrödinger equations are built successfully by coupling fractal semi-
inverse and He’s two-scale transformation methods, which are helpful to reveal 
the symmetry, to discover the conserved quantity, and the obtained variational 
principles have widespread applications in numerical simulation. 
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Introduction  

In [1], the non-linear Schrödinger equations with high non-linearity and variable co-

efficients were studied, which are:  
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where ( , ),u u x t= ( , )v v x t= are complex-valued functions of x and ,, ,i i it     (i = 1, 2) are the 

constant parameters, and K is the coupling constant.  

There were many reports about the Schrödinger equations. Ain, et al. [2] studied 

time-fractional Schrödinger equation. He and El-Dib [3, 4] considered some modifications of 

the Schrödinger equation, and its periodic solutions were discussed. Yao and Chang [5], Ozis 

and Yildirim [6], and Zhou and Wang [1] established the variational formulations for various 

modifications of Schrödinger equations. But so far, the variational principle for variable coef-

ficients and highly non-linear Schrödinger equation (VCHNSE) of fractal order has not been 

dealt with. Equations (1) and (2) describe the interaction between two waves of different fre-

quencies or identical frequency, which pertain to two different polarities. In real application, 
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the smooth space (t, x) should be replaced by the fractal space ( , )t x 
, with α and β are frac-

tal dimensions in time and space, respectively, because the non-smooth boundary has a great 

influence on the two waves [7-9]. Fractal calculus provides a very effective manner to deal 

with discontinuous boundaries or porous media, and much achievement was obtained. For ex-

ample, heat conduction in a porous concrete [10], vibration systems in a porous medium [10-

14], mechanical and electrical properties of a composite [15], and fractal MEMS systems [16, 

17]. Furthermore the discontinuous population growth [18] and the discontinuous economic 

development [19] can also be modelled by the fractal calculus. It was reported that the un-

smooth boundary will greatly affect the solitary waves, though the wave shape is rarely af-

fected [7-9].  

When the Schrödinger equation with high non-linearity and variable coefficients is 

in a non-smooth or discontinuous boundary, the fractal derivative is used to describe the mod-

els: 
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where /u t   and /u x  are He’s partial fractal derivatives with respect to t and ,x  re-

spectively, defined [20, 21]:  
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where Dx is mean pore size and Dt is the shortest time period of variable change at spacing dis-

tance of Dx. When the spatial scale is larger than Dx, the boundary is considered as smooth, and 

if not more, then the border is discontinuous and is considered a fractal curve. Likewise for 

time, when we observe the solitary wave on a scale exceeding Dt, a smooth wave morphology 

will appear. However, when we observe the wave on the scale not exceeding Dt, discontinuous 

wave morphology can be found. Detailed explanation of the fractal derivative is available in 

refs. [22-26]. For the fractal derivatives, we have the following chain rules [20, 21]: 

 
2 2

2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
,

u x t u x t u x t u x t u x t u x t

t x t x x x x      

     
= =

      
  (7) 

Fractal derivative models were widely used in engineering, thermodynamics, elec-

trospinning, electrochemical, biomechanism, tsunami travelling, thermal insulation, for exam-

ples, fractional Sine-Gordon equation [27], fractal Chen-Lee-Liu equation [28], fractal Lang-

muir model [29], fractal charge transport [30], fractal power law flow [31], fractal Harry Dym 

equation [32], fractal Klein-Gordon equation [33], fractal KdV-Burgers-Kuramoto equation 

[34], fractal KdV equation [35], fractional memristor model [36], fractal Burgers' equation 

[37, 38], and non-smooth initial value problem [39]. 
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On substituting: 

 1 1 2 2( , ) ( , ) ( , ), ( , ) ( , ) ( , )u x t x t i x t v x t x t i x t              = + = +   

where ( , )i x t  and ( , )(  = 1, 2)i x t i   are real functions of x and t, we obtain the differen-

tial equations about 1 1 2, , ,    and 2:  
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In this paper, the fractal variational formulas of general systems (8)-(11) are estab-

lished with coupling fractal semi-inverse [40-42] and fractional complex transformation  

[43, 44], which was further developed into the two-scale transformation methods [2, 20, 21]. 

Although the highly non-linear or variable coefficient Schrödinger equation has been widely 

studied by many scientists for a long time, so far, the variational principle of fractal Schrö-

dinger equation has not been studied in fractal spaces.  

Variational principle for the fractal  

Schrödinger equation 

The variational theory plays an important role in mathematics and physics because 

variational formulas show the structure of possible energy conservation laws and solutions. 

Wang et al. [45] set up a variational principle for anisotropic wave propagation in fractal 

space. Wang and He [46] extended Wang's variational principle [45] to fractal space/time. 

Now various fractal variational principles were appeared in literature for fractal KdV-Burgers 

equation [47], fractal plasma model [48], and fractal Telegraph equation [49].  

He's semi-inverse method [40-42] is widely used to establish variational principles 

directly from governing equations. In this work, we will apply the He’s semi-inverse method 

[40-42] and the two-scale fractal theory [50, 51] to establish a variational principle for the 

fractal VCHNSE. 

In order to find the variational formulation of the systems (8)-(11), we first set up a 

fractal trial functional: 

 1 1 2 2( , , , ) d dJ L x t     =     (15)  

where L is the fractal trial-Lagrange functional.  

There are many ways to establish a fractal trial functional [40-42]. Among them, we 

choose the following form: 
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where F is an undetermined function with regard to 1 ,  and/or 2 ,  and/or 2  derivatives. 

There exist various alternative approaches to construct the trial functional, illustrative exam-

ples can be found in [40-42]. The advantage of the above trial-functional lies on the fact that 

stationary condition with respect to 1,  and noting that F is absence of 1 and its derivatives, 

is eq. (9).  

At present, the variation of eq. (16) with respect to 1  gives the result Euler Lagran-

ge equation: 
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where 1F   are called the fractal variational derivative about 1  [40-42] presented: 
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We look for such an F so that eq. (17) leads to eq. (8). So we set: 
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from which the undetermined F can be defined: 
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where F1 is a newly undetermined function that was introduced in regard to 2 or/and 2 de-

rivatives. The fractal trial-Lagrange, eq. (16), is updated: 
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At the moment, the stationary condition about 2 is: 
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In eq. (22), we set: 
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From eq. (23), the unknown F1 can be distinguished: 
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where F2 is an undetermined function of 2 ,  or/and its derivatives.  
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The fractal Lagrangian can go further updated as: 
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The fractal Euler equation on 2 is: 
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Equation (26) equates to eq. (11), as a result, we presume: 
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So we can identify 2F  without difficulty:  
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At the moment, we get the fractal Lagrangian function: 
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Superseding: 
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here 1 1,u i  = −  2 2 ,v i  = − we can obtain the Lagrangian eq. (29) on the basis of u and v:  
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Finally, the variational principle is obtained about u and v, displaying: 
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Discussion and conclusion 

In this article, the fractal non-linear Schrödinger equation with variable coefficients 

and high non-linearity in fractal space is studied. With the help of He’s two-scale transfor-

mation method [2, 20, 21], the fractal non-linear Schrödinger equation can be changed to its 

partner. 

We assume: 

 ,T t X x = =   (32) 

Therefore, systems of eqs. (8)-(11) can be transformed into the undermentioned: 
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Employing the previous approach, we acquire the variational formulation set of eqs. 

(33)-(36) in the light of u and v: 
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For the unique fractal Schrödinger equation: 
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can be changed into under mentioned: 
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Using a resemblance procedure, the variational principle of eq. (39) can be received:  
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With the help of eq. (40), we obtain a few special samples: 

– ε1 = ε2 = 0, eq. (40) reduces to the results obtained by Yao and Chang [5],  

– η1 = 0, eq. (40) is equivalent to the fruit obtained by He [40], 

– ε1 = ε2 = 0, λ1 = 0, η1 = 0, eq. (40) reverts to: 
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which is expounded by Ozis and Yildirim [6].  

Zhou and Wang [1] have found a variational formulation for VCHNSE. In this 

work, we successfully extended VCHNSE to fractal VCHNSE by using He's fractal derivative 

via semi-inverse and He’s two-scale transformation methods. The fractal models of coupled 

VCHNSE on non-smooth boundary are obtained and the fractal variational principle of cou-

pled VCHNSE is successfully constructed. The correctness of the obtained variational princi-

ple is verified. It shows that the semi-inverse method is concise and effective. Based on the 

obtained variational principle, we can further study the motion law of solitary waves, and the 

problems discussed can be solved numerically with the help of variational method 
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