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 This manuscript aims to investigate the velocity profile for the blood flow through 
an artery subject to magnetic field. It has been investigated how periodic accelera-
tion of the body and slip conditions affect the irregular pulsatile blood flow across 
a porous media inside an artery if a magnetic field is present, under the assump-
tion that blood is an incompressible electrically conducting fluid. A mathematical 
formulation involving Caputo fractional derivative serves as the basis of study. An 
analytical solution for fluid velocity is developed with the help of finite Hankel and 
Laplace transforms. The influence of fractional order on the fluid velocity is illus-
trated with the help of graphical simulations. The obtained results will be helpful 
in future research for the treatment of stenosis and other cardiovascular diseases. 
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Introduction

The MHD application brings down the rate of flow of blood in the human arterial 
(circulatory) system. This has been found very helpful to treat cardiovascular disorders partic-
ularly atherosclerosis (medically called stenosis). Stenosis is the most common arterial blood 
vessel condition which can cause death. From last few decades, researchers have been paying a 
lot of attention fluid dynamics to investigate the behavior of biological fluids when a magnetic 
field is applied on them. The reason is the significance of the studies on this topic in the field of 
medical sciences. Eldesoky [1] studied a mathematical formulation of blood flowing unsteadily 
across parallel plates when the magnetic field was applied on it. Latha and Kumar [2] proposed 
a biomagnetic fluid-flow in parallel plates on which radiation and heat source affect. Ali et al. 
[3] examined the problem of incompressible, electrically conducting, viscous, unsteady flow of 
blood and transfer of heat across a channel of plates with the lower plate kept stretched. Ku-
mar and Diwakar [4] studied the nature of blood flowing inside an artery affected by stenosis. 
The blood under consideration exhibited fluid-like behavior in a homogeneous circular tube 
with a radially symmetric but axially non-symmetric stenosis. The governing model for bound-
ary-constrained laminar, incompressible, and non-Newtonian fluid-flow (power-law fluid-flow) 
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was numerically solved. Sharma et al. [5] examined the pulsatile MHD flow of blood inside 
an artery for double stenosis problem. Eldesoky [6] conducted research on time-dependent 
(injuction/suction) pulsatile MHD unsteady blood flow across porous medium in considering 
slip condition at permeable walls. Blood flow in capillaries with MHD was examined by Misra 
and Sinha [7], whose lumen was porous and wall permeable. The movement of Jeffery fluid 
subject to magnetic fields was examined by Nallapu and Radhakrishnamacharya [8] for the 
flow through tubes of very small diameters. The impact of permeability of a porous material on 
MHD blood flow through extremely small capillaries was researched by Agarwal and Varshney 
[9]. Verma et al. [10] investigated the pulsatile blood flow in moderate stenosis while accel-
erating the body. The pulsatile laminar flow of blood across and artery arterial was examined 
by Rabby et al. [11] for double stenoses. The axisymmetric flow of blood through s stenotic 
channel was examined by Kumar and Diwakar [12]. Some other interesting results available in 
literature are reported in [13-16].

Fractional order mathematical models have caught the attention of many researchers 
during the past few years. The fractional differential equations are found to be more beneficial 
in various theoretical investigation due to their flexibility and useful mathematical properties. 
Abro and Atangana [17] presented a mathematical fractional formulation of pulsatile MHD 
flow in the presence of porosity, considering two definitions of fractional derivatives. Anwar 
et al. [18] investigated a fractional order model for MHD flow of Oldroyd-B fluid using Capu-
to-Fabrizio derivative. 

Formulation of problem

The unsteady pulsatile blood flow through an axisymmetric, cylindrical artery with 
a diameter 2R through some porous structure with body acceleration as shown in the fig. 1. 
The cylindrical co-ordinates (r, θ, z) are induced with z-axis taken along the central axis of the 
artery. The flow is considered under the assumption that the blood is an electrically conduct-
ing, incompressible, Newtonian fluid subject to a constant magnetic field B(0, B0, 0) which is 
orthogonal to the artery. The blood’s viscosity is constant. The magnetic Renolds number is 
considered to be sufficiently small for the flow so that the induced electric and magnetic fields 
can be ignored. The following terms used in the model are taken: 
 – For steady flow A0 is the pressure gradient.
 – Amplitude A1 is for oscillatory part.
 – Amplitude a0 is for body acceleration.
 – The ωp = 2∏fp where fp is pulse rate.
 – The ωb = 2∏fb where fb is frequency of body acceleration.
 – The u(r, t) is the velocity at time, t.
 – The k denotes the permeability parameter for porous medium.
 – The ρ, σ, and ϖ denote the density, electric conductivity and dynamic viscosity of blood, 

respectively. 
The expressions for Hartmann number, Ha, Womersley parameter, β, and Knudsen 

number, Kn, are given:

 
0Ha = B R σ

ϖ
,
   

= R ρωβ
ϖ
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The body acceleration and pressure gradient can be expressed:

0= cos( )bG a tω (1)
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The flow equation in cylindrical polar co-ordinates can be written:

= 2u p u G u
t z k

ϖρ ϖ ρ∂ ∂  − + ∇ + − + × ∂ ∂  
J B (3)

The Maxwell’s equations state:

0= 0,  = ,  =E
t

ϖ ∂
∇ ∇× ∇× −

∂
B

B B J (4)

The Ohm’s law implies:
= ( )Eσ + ×J V B (5)

where the velocity distribution is denoted by V = (0, 0, u), ϖ0 is the magnetic permeability,  
J is the current density, and E is the electric field. Since the magnetic Reynolds number is 
small, therefore, the linearized magnetohydrodynamic force is expressible:

2
0     = B uσ× −J B (6)

whereas the shear stress τ is [19]:

= u
r

τ ϖ ∂
−

∂ (7)

The equation of motion using the given assumptions can be written:

[ ]2 2
0 1 0 02
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Using the assumptions:
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The non-dimensional form of eq. (8) can be written:

 

2
2 2

0 1 0 2
1 1cos( ) cos( ) Hau u ut a bt u

t r r kr
β

 ∂ ∂ ∂  = Λ + Λ + + + − +    ∂ ∂∂   

where the stars are dropped for sake of conve-
nience.

The initial condition:

                   ( ,0) = 1 at = 0u r t

whereas the boundary conditions are:

            (0, )  is finite (axis of the pipe)u t

                 (1, ) = 0 at = 1, (no slip)u t r
Figure 1. Schematic diagram of the problem
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Extraction of solution for fractional order model

Consider the governing equation:
2

2 2
0 1 0 2

1 1cos( ) cos( ) Hau u ut a bt u
t r r kr

β
 ∂ ∂ ∂  = Λ + Λ + + + − +    ∂ ∂∂   

(9)

Applying the Caputo fractional derivative, the following equation can be obtained:
2

2 2
0 1 0 2
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where
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is the Caputo fractional derivative operator of order α [20, 21].
Applying Laplace transform corresponding to time, t, on eq. (10), the result can be 

obtained:
2
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Using the initial condition, the resulting equation:
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Using the finite Hankel transformation [22, 23] of order zero, the resulting equation 
is obtained:
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is the finite Hankel transformation of ū(r, s). Moreover, rn > 0 where n = 1,2... are the roots of 
J0(x), J0 being the zeroth order Bessel function of first kind. Further simplification yields the 
following relation. 

2
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β
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2 2

2 2 2
Ha 1nrQ s

K
α

β β β

  
= + + +      

(16)

Applying Laplace inverse transformation on eq. (15), gives:
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where f  *g is the convolution of f and g. After applying the inverse Hankel transform the result 
is obtained:
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After simplification, the result is acquired:
2 2 2

0
0 1 02 2 2 2

11

( )2 Ha 1( , ) , * cos( ) cos( )
( ) (1 )

n n

n nn

J rr r tu r t F t t a bt
r J drd K

α

α
β

αβ β β β

∞ −

=

     
 = − + + Λ + Λ +        Γ −      

∑

Numerical simulations and results

The study is based on pulsatile blood flow 
across a porous medium inside an artery. The un-
steady flow is considered with the periodic body 
acceleration when the magnetic field is applied. 
The corresponding fractional order mathemat-
ical model is considered taking the fractional 
derivative in Caputo’s sense. The influence of 
fractional order α on fluid velocity is investigat-
ed. The graph of the solution is obtained using 
the MAPLE software. Graphically, fig. 2 demon-
strates that fluid velocity reduces when the frac-
tional order value α is increased. Figures 3 and 4 
illustrate the effect of different fractional order α 
on velocity profile.

Figure 2. Velocity u(r, t) for different  
values of fractional order α
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Figure 3. The 3D effect of fractional order α on plot of velocity profile u(r, t)  
(a) when α = 0.75 and (b) when α = 0.90

Figure 4. The effect of fractional order α on plot of velocity profile u(r, t) 
(a) when α = 0.75 and (b) when α = 0.90

Conclusion

Considering a MHD approach, the impact of Caputo’s fractional derivative on blood 
flow characteristics in a cylindrical domain has been investigated. Using the finite Hankel and 
Laplace transforms, the exact solutions of the governing fractional order evolution equation 
are retrieved. The calculated results are illustrated through few graphical representations. It is 
hoped that this study will be useful for future research in the medical area and the use of mag-
netic fields to treat some cardiovascular diseases. The findings of this research will be helpful 
to understand the pathological condition of flow of blood in arterial system when blood clots or 
fatty cholesterol plaques develop in the artery lumen.
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