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Based on the local fractional derivative, a new local fractional Klein-Fock-Gordon 
equation is derived in this paper for the first time. A simple method namely Yang’s 
special function method is used to seek for the non-differentiable exact solutions. 
The whole calculation process strongly shows that the proposed method is simple 
and effective, and can be applied to investigate the non-differentiable exact solu-
tions of the other local fractional PDE.
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Introduction

As we all know, a great deal of the complex phenomenon occurring in nature such as 
the optics [1-3], biology [4], vibration [5], thermal science [6, 7], and so on [8, 9] can be mod-
eled by the PDE. It is of great significance to study the exact solution of the NLPDE since it can 
enable us to better understand and make use of natural phenomena. Recently, the fractal and 
fractional derivative have the wide attentions in different fields because they can model the com-
plex problems that the integer derivative cannot [10-16]. In this work, we aim to derive a new 
fractional Klein-Fock-Gordon equation based on the local fractional derivative (LFD) [17, 18]:
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where Ξξ = Ξξ (x ξ, t ξ), ξ (0 < ξ ≤ 1) is the fractional order, ∂ξΞξ/∂t ξ and ∂ξΞξ/∂x ξ are the local  
fractional derivatives and their definitions [19-22]. In this work, we aim to investigate the 
non-differentiable (ND) exact solutions of the local fractional Klein-Fock-Gordon equation by 
Yang’s special function method. 

Basic theory

In this section, we will introduce some basic theory.
Definition 1. The LFD for Ξ(x) of the fractional order ξ is defined [19]:
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where Δξ[Ξ(x) – Ξ(x)] ≅ Γ(1 + ξ)[Ξ(x) – Ξ(x0)]. For the LFD, there is the rule chain [19]:
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Definition 2. The local fractional integral (LFI) for Ξ(x) ξ is defined [19]:
1

0
0

1 1( ) ( )(d ) lim ( )( )
(1 ) (1 ) k

b N

a k kb x
ka

I x x x x xξ ξ ξ

ξ ξ

−

∆ →
=

Ξ = Ξ = Ξ ∆
Γ + Γ + ∑∫ (3)

where Δxk = xk+1 – xk and x0 = a < x1 < ... < xN–1 < xN = b. 
Property 1. The LFD admits the properties [22]:
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Definition 3. The definition of the Mittag-Leffler function (MLF) on the CS is [19]:
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Definition 4. By the MLF, the special functions can be constructed [19]:
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Property 2. The MLF owns the following properties [19]:
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The ND exact solutions

The aim of this section is to apply Yang’s special function method to construct the ND 
exact solutions. To this end, we introduce the ND transformation [20]:
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 Taking eq. (5) into eq. (1) yields:
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In the view of Yang’s special function method [21, 22], there are the results: 
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 Its ND exact solutions are given as:
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To solve eq. (6), we multiply both sides of eq. (6) by dξψξ /dχξ as:
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Taking the LFI of previous equation and ignoring the integral constant yields:
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By comparing eq. (10) and eq. (7), we can get the solutions in just one step as:
Set 1.
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Then the ND exact solution of eq. (1) on the CS is obtained as:
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So there are:
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Thus the ND exact solution of eq. (1) on the CS can be got as:
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Then the ND exact solution of eq. (1) on the CS is obtained:
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Then the ND exact solution of eq. (1) on the CS is obtained:
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Nomenclature
x – space co-ordinate, [m]    t – time co-ordinate, [second]
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