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Solutions of 3-D multi-domain transient thermal analysis with variable thermal 
sources in non-homogeneous media are separated into homogeneous and special 
solutions by an efficient boundary meshfree computational approach, namely virtual 
boundary meshfree Galerkin method. Homogeneous solutions are expressed by the 
virtual boundary element method. The virtual source functions of homogeneous solu-
tions and the unknowable coefficients of special solutions can be formed by the radi-
al basis function interpolation. Considering the control equation, the boundary and 
continuous conditions, and using the Galerkin method, the discrete formula for 3-D 
multi-domain transient thermal analysis with variable thermal sources in non-homo-
geneous media can be obtained. This discrete equation has symmetry. Meanwhile, in 
order to illustrate the steps of implementation more clearly, the final detailed imple-
mentation process is given. The numerical results of two calculation examples are 
obtained and compared to other methods and exact solutions. The proposed method’s 
stability and exactness are validated for 3-D multi-domain transient thermal analysis 
with variable thermal sources in non-homogeneous media.
Key words: 3-D transient thermal non-homogeneous media, meshfree method, 

variable thermal source, multi-domain, boundary element method 

Introduction

Thermal conduction problems are a very important class of problems in engineering 
and scientific research [1, 2]. In fact, many thermal conduction problems are transient thermal 
conduction problems varying with time, such as the cutting thermal conduction of steel [3], the 
metal welding [4], the rocket engine [5], and so forth. The boundary element method has semi 
analytical and semi numerical characteristics. It is a prominent technique to calculate these 
kind of transient thermal conduction problems, especially 3-D problems. Such as Fu et al. [6] 
analysed the transient anomalous thermal conductions in functionally graded materials with 
the help of the singular boundary collocation method. Jiang et al. [7] used boundary element 
method (BEM) with the radial integration and the modified Levenberg-Marquardt approach to 
solve the shape reconstruction of transient thermal conduction problems. Yu et al. [8, 9] com-
puted 3-D functionally graded materials of transient thermal conduction problems with the help 
of the isogeometric dual reciprocity BEM. Jacinto et al. [10] calculated the transient thermal 
conduction of the heterogeneous solid medium by combining BEM and analytical solutions. 
Xu et al. [11] utilized the isogeometric BEM to analyze the functionally graded materials with 
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the transient thermal conduction problems. There are some advantages to the aforementioned 
BEM, but they also have some drawbacks. These include the singular integral, the vertex ques-
tion, the boundary-layer effect, and so forth. 

Virtual BEM [12, 13] can eliminate these mentioned defects. It is assumed that the 
point loads exist on the virtual boundaries [12]. Subsequently, the continuous virtual source 
functions are used instead of point loads [13, 14] to enhance the computational exactness. 
Combining the meshfree method and VBEM, the virtual source functions are interpolated with 
the help of the moving least squares approximation [15] in order to make better the calcula-
tion exactness. However, the weighting coefficients are artificially set [15]. To get the unique 
weighting coefficients, considering the Galerkin method, the meshfree method, and VBEM, 
the virtual boundary meshfree Galerkin method (VBMGM) is formed for 2-D single-domain 
thermal conduction problems with thermal sources [16]. The coefficient matrix of VBMGM is 
sparse and symmetric. Since the calculation problems of thermal conductions are often com-
posed of different materials, an effective way to calculate the thermal conduction problems is 
to use the multi-domain combination method. The VBMGM as an efficient boundary meshfree 
computational approach is extended to 3-D multi-domain transient thermal analysis with vari-
able thermal sources in non-homogeneous media. 

Mathematical formulation

The relationship between the whole domain and sub-
domains of the multi-domain transient thermal analysis 
is shown in fig. 1. The whole domain Ω is composed of 
subdomains [13]. Take the lth sub domain Ω(l) as an exam-
ple to illustrate the relationship between subdomains and 
the whole domain Ω. The Ω = Ω(1) ∪ Ω(2) ∪ ... Ω(l) ... ∪ Ω(n) and  
Ω(1) ∩ Ω(2) ∩ ... Ω(l) ... ∩ Ω(n) = ⌀ (the null set). The real bound-
aries of the whole domain Ω and the lth subdomain Ω(l) are 
recorded as Γ and Γ (l), respectively. Suppose that the lth and 
sth subdomains share the common or continuous boundary, 
namely Γ (ls). 

The control equation is given for the transient thermal analysis with variable thermal 
sources in non-homogeneous media in the l subdomain Ω(l):
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where k (l) (x), c (l) (x), and ρ(l) (x) are the thermal conductivity coefficient, the specific thermal 
capacity and the density of the subdomain Ω (l), respectively, ∇ is the Laplace operator, T (l) (x, t) 
and Q(l) (x, t) are the temperature and the thermal source on the x point at time, t, respectively, 
and ∂ represents the partial derivative. 
	 The T (l)(x, t) and Q(l)(x, t) in eq. (1) can be demonstrated by the time step difference 
scheme with full implicitness, namely T (l)(x, t) =T (l) 

t+ Δt(x), Q (l)(x, t) = Q (l) 
t+Δt(x), and ∂T  (l)(x, t)/∂t ≈ 

[T  (l) 
t+ Δt(x) – ∂T t

(l)(x)]/Δt, where Δt is the time step. The T t
(l)(x), Q t

(l)(x), T  (l)   
t+ Δt(x), and Q  (l)   

t+ Δt(x) are the 
computed temperature and thermal source on the x point at t and t + Δt time, respectively. Then, 
eq. (1) can be changed:

Figure 1. Schematic diagram 
of multi-domain combinatorial 
problems
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The thermal source, boundary and continuous conditions at t + tΔ time for the l sub-
domain of 3-D transient thermal analysis can be given:

( ) ( ) ( )( ) ( ),l l l
t t t tQ Q Ω+∆ +∆= ∈x x x (3)

( ) ( ) ( )( ) ( ),l l l
t t t t TT T Γ+∆ +∆= ∈x x x (4)

( ) ( ) ( )( ) ( ),l l l
t t t t qq q Γ+∆ +∆= ∈x x x (5)

( ) ( ) ( )( ) ( ),l s ls
t t t tT T Γ+∆ +∆= ∈x x x (6)

( ) ( ) ( )( ) ( ),l s ls
t t t tq q Γ+∆ +∆= − ∈x x x (7)

where Q ¯ (l)t+Δt(x) is the known thermal source within the lth subdomain Ω (l), T̄  (l)t+Δt(x) and  q̄ (l)t+Δt(x) 
are the values of temperature and thermal flux on the boundary ΓT 

(l) with the known temperature 
and the boundary Γq

(l) with known thermal flux in Ω (l), respectively.
Considering that eq. (2) is a non-homogeneous equation, T̄  (l)t+Δt(x) is composed of the 

homogeneous solution T ̄  (l)hs
t+Δt(x) and special solution T ̄  (l)ss

t+Δt(x):
( ) ( ) ( )( ) ( ) ( )l l hs l ss

t t t t t tT T T+∆ +∆ +∆= +x x x (8)
Because of q (l) 

t+ Δt(x) = –k(l) ∂T (l)t+Δt(x)/∂n, q (l) 
t+ Δt(x) is also made up of the homogeneous 

solution q (l) 
t+

hs
 Δt(x) and special solution q (l) 

t+
ss

 Δt(x): 
(9)

Solution algorithm

Homogeneous solutions

The homogeneous solutions T (l)hs
t+Δt(x) and 

q (l)hs
t+Δt(x) are demonstrated by VBEM [17]. Next, 

VBEM of any 3-D subdomain is introduced. The 
boundary Γ(l) of the lth subdomain Ω(l) can be ex-
tended along the normal outward direction n(x) 
of any point x in fig. 2. The virtual subdomain 
and its virtual boundary are recorded as Ω (l)′ and 
S (l), respectively. The continuous virtual source 
function φ(l)

t+Δt(ξ) exists at any point ξ of the virtu-
al boundary S (l). 

The φ(l)
t+Δt(ξ) is interpolated by the radial ba-

sis function interpolation (RBFI) [16]:

( ) ( ) ( )T

1

( ) ( ) ( ) ( )
m

l l l
i it t t t t t

i

Nϕ ϕ+∆ +∆ +∆
=

= =∑ N ϕξ ξ ξ ξ (10)

where m is the virtual node number within the 
current support domain of the ξ point, ξi the ith 

( ) ( ) ( )( ) ( ) ( )l l hs l ss
t t t t t tq q q+∆ +∆ +∆= +x x x

Figure 2. Schematic diagram of VBEM for 
any 3-D subdomain non-homogeneous media
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virtual node, and N(ξi) – the shape function about the virtual node ξi. Assume that there are VN(l)

virtual nodes on the S (l) within the  Ω(l). The NT(ξ) and φ (l)   
t+ Δt are the matrices of the shape func-

tions and the virtual source functions:

{ }( )
T

1 2( ) ( ) ( ) ( )lVN
N N N=N ξ ξ ξ ξ (11)

{ }( )

T( ) ( ) ( ) ( )
1 2( ) ( ) ( )l
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Expressions of T (l)hs
t+Δt(x) and q (l)hs

t+Δt(x) by VBEM:
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where me′ is the element number on the S (l), e′ – the Gauss point number within virtual element, 
J′ – the Jacobian of virtual element, ξ e′

g′ – the q′th Gauss point of the e′th virtual element on the 
virtual boundary S (l), w~1(ξ e′

g′) 
and w~2(ξ e′

g′) are the weighting coefficients of the Gauss integral 
within the virtual element, T *(x, ξ e′

g) and q*(x, ξ e′
g) are the fundamental solutions of temperature 

and thermal flux for 3-D thermal analysis. The T *(x, ξ e′
g) = 1/4πr, q*(x, ξ e′

g) = –k(l)∂T* (x, ξ e′
g)/∂n, 

where r is the distance between x and ξ e′
g:

Special solutions

The T (l)ss
t+Δt(x) and q (l)ss

t+Δt(x) are gotten by RBFI within the lth subdomain Ω(l).
The T  (l) 

t+
ss

 Δt(x) is shown [16]:
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( ) ( ) ( )

1

( ) ( , ) ( )
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T f β+∆ +∆ +∆
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where DN(l) is the virtual node number within the subdomain Ω(l), β(l)   
t+ Δt(xk) – the coefficient to 

be solved, f (l)   
t+Δt(x, xk) = r2/6 + r5/30, where r is the distance between x and xk:

The q  (l) 
t+

ss
 Δt(x) is:
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Unified forms of solutions

Submitting eqs. (13)-(16) into eqs. (8) and (9), eqs. (8) and (9) can be re-written and 
expanded to all unknowable coefficients:
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where the matrices Ψt+Δt, Ut+Δt, and Pt+Δt are expressed as:
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where NT is the total number of unknowable coefficients, namely NT = ∑n
l=1(VN(l) + DN(l)), U It+Δt

and P It+Δt are the term of integral accumulations of the virtual source functions or the term of the 
unknowable coefficient within the lth subdomain Ω(l), and are written:
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where K is the Gauss point number in the current support domain of the node I on the boundary S(l).
Similarly, submitting eqs. (17) and (18) into eq. (2), eq. (2) can be re-expressed:
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here Q I t+Δt is also the integral term accumulations or the term of the unknowable coefficient 
about the node I within the lth subdomain Ω(l):
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Calculation scheme

Considering the control eq. (2), the boundary and continuous conditions eqs. (3)-(7), 
and using the Galerkin method, assuming Q(l)   

t+Δt as the known internal thermal source, the inte-
gral formula of VBMGM for 3-D multi-domain transient thermal analysis with variable thermal 
sources in non-homogeneous media can be obtained:
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where the weighting coefficients w1 = δ[T (l)t+Δt(x)], w2 = δ[q(l)
t+Δt(x)], w3 = δ[q(l)

t+Δt(x)],  
w4 = δ[T (l)t+Δt(x) – T(s)

t+Δt(x)], and w5 = δ[q (l)t+Δt(x) + q(s)
t+Δt(x)], and δ is the variational symbol.

In due to ∂T (l)t+Δt(x)/∂Ψ It+Δt = U It+Δt and ∂Q (l)t+Δt(x)/∂Ψ It+Δt = Q It+Δt, submitting eqs. (17), 
(18), and (24) into eq. (26), the discrete formula of VBMGM for 3-D multi-domain transient 
thermal analysis with variable thermal sources in non-homogeneous media can be re-written 
into matrix form:
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t t t t t t+∆ +∆ +∆= =C DΨ (27)

where the coefficient matrix Ct+Δt = [C mn
 t+Δt]NT×NT

 
is sparse and symmetric, the right-hand known 

matrix Dt+Δt = [D mn
 t+Δt]NT×1 based on the real and continuous boundary conditions and thermal 

sources in each subdomain. The expressions of C mn
 t+Δt and D mn

 t+Δt are obtained:

{ }
( )( ) ( )( )

1

( )

( )
n

mn m n m n m n
t t t t t t t t t t t t t t

l
m m n n m m n n
t t t t t t t t t t t t t t t t

G ls

C U U P P Q Q

U U U U P P P P
Γ

+∆ +∆ +∆ +∆ +∆ +∆ +∆
=

+∆ +∆ +∆ +∆ +∆ +∆ +∆ +∆

= + + +

+ − − + + +

∑

∑

x
(28)

( ) ( )

1`

( )
( ) ( ) ( )

n
l lm m m m t

t t t t t t t t t tt t t t
l

T
D U T P q Q Q c

t
ρ+∆ +∆ +∆ +∆ +∆+∆ +∆

=

 = + + + ∆ 
∑ x

x x x (29)

It can be found that w1 = U m t+Δt, w2 = P m t+Δt, w3 = Q m t+Δt, w4 = U m t+Δt – U m t+Δt, and  
w5 = P m t+Δt + Pm 

t+Δt of eq. (26). 

Implementation process

It is assumed that the time of computation for transient thermal conduction prob-
lems is recorded as tcalculation × tcalculation can be divided into n parts. Each part is Δt. Therefore,  
tcalculation = [t0, t0 + Δt, t1 + Δt,..., tn–1 + Δt]. Since the boundary conditions at t0 are known, the 
unknowable Ψt0+Δt can be obtained by eq. (27). Submitting Ψt0+Δt into eqs. (17), (18), and (24),  
T(l)

t0+Δt(x), q(l)
t0+Δt(x), and Q(l)

t0+Δt(x) can be computed. Importing T(l)
t0+Δt(x), q(l)

t0+Δt(x), and Q(l)
t0+Δt(x) into  

eq. (27), Ψt1+Δt can be gotten. The Ψtn–1+Δt, T (l)tn–1+Δt (x), q(l)
tn–1+Δt (x), and Q  

(l)
tn–1+Δt (x) namely Ψtcalculation, 

T(l)
tcalculation(x), q(l)

tcalculation(x), and Q(l)
tcalculation(x) are finally obtained by solving in turn. 

Numerical examples

Example 1. The cube with variable thermal conductivity and thermal sources.
The cube with variable thermal conductivity thermal sources (region [1, 1, 1] m × [2, 

2, 2] m according to [x, y, z] co-ordinates) is shown in fig. 3. The surrounding boundary condi-
tions are T(x, t) = x2 + y2 + z2 + sin(10t) [°C]. Thermal conductivity k(x) = x + y + z [W/m°C]. 
Density ρ = 1 kg/m3. Specific thermal capacity c = 1 J/(kg°C). Thermal source Q(x, t) = –8(x + 
y + z) + 10cos(10t) [W/m3]. The starting temperature changed T(x, 0) = x2 + y2 + z2 [°C].

It should be noted that the divisions of elements and extraction of nodes of this paper 
are obtained by Mesh200 element of ANSYS software. The prepossessing data are imported 
into our own program, and then the numerical results are calculated. The discretization of the 
real boundaries is exhibited in fig. 4. Each face of real boundaries is divided into 16 elements. 
The virtual boundary is 0.1 m away from the real boundary. Each face of virtual boundaries is 
also divided into 16 elements. The nodes for interpolation of thermal sources are obtained by 
dividing the cube using Solid65 elements of ANSYS software, as shown in fig. 5. There are 
125 nodes in fig. 5. The number of virtual elements and virtual nodes is identical. Virtual nodes 
are positioned at the midpoint of their virtual elements. The construction of the virtual source 
function utilizes 8 virtual nodes. Each virtual or real element adopts 4 Gauss points for inte-
gration. The exact solutions T(x, t) = x2 + y2 + z2 + sin(10t) [°C] [17-19]. The radial integration 
boundary-element method with finite difference (RIBEM-FD) [17] and the precise time-do-
main boundary-element method (PTBEM) [18] were also used to calculate this problem. The Δt 
of two numerical methods were 0.0001 second and 0.001 second, respectively. For comparison, 
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Δt is taken as 0.0001second in the paper. The corresponding results are shown in fig. 6. The 
RMSE is the root mean square error defined as [17]:

( )

( )

2
numerical exact

1

2
exact

1

N
i i

i
N

i

i

T T
RMSE

T

=

=

−

=
∑

∑
where T inumerical and T i

exact are the numerical result and exact solution of the ith real node and N – 
the number of the real nodes. We can see that RMSE of this paper is smaller than the other two 
at 1-3 seconds and slightly larger at the latter two seconds.

Take Δt = 0.1 second and calculate the temperatures at different times when  
z = 1.5 m, namely half of the cube along the z-axis in tab. 1. In tab. 2, the distance between the 
virtual and real boundaries has been altered to reveal the exactness of this method. The stability 
and exactness of the proposed method can be observed from tab. 1 and tab. 2.

Example 2. The cuboid of three subdomains with variable boundary conditions and start-
ing temperature (the first subdomain [1, 1, 1] m × [2, 2, 2] m, the second subdomain [1, 1, 2] m × [2, 
2, 3] m and the third subdomain [1, 1, 3] m × [2, 2, 4] m according to [x, y, z] co-ordinates) is giv-
en in fig. 7. The surrounding boundary conditions of the cuboid with three subdomains are T(x, t) 
= [sin(π, x) + sin(π, y) + sin(π, z)]e–kπ2t [°C]. The continuous boundary conditions between subdo-
mains should be considered here. Thermal conductivity k1(x) = k2(x) = k3(x) = 0.1 W/m°C. Densi-
ty ρ1 = ρ2 = ρ3 = 1 kg/m3. Specific thermal capacity c1 = c2 = c3 = 1 J/kg°C. Thermal source Q1(x, t)  
= Q2(x, t) = Q3(x, t) = 0. The starting temperature changed is T(x, 0) = sin(πx)+ sin(πy) + sin(πz).

Because discretizations of the three subdomains are similar, only the schematic dia-
gram of the first subdomain (spherical surface with radius 1m, the spherical center co-ordinates 
x = 1.5 m, y = 1.5 m, z = 1.5 m) is given to illustrate the stability of this method, as shown in fig. 
7. There are 88 virtual boundary elements in fig. 8. There is no need to interpolate the thermal 

Figure 3. The calculation model of the cube 
with variable thermal conductivity and 
thermal sources

Figure 4. Schematic diagram of real 
boundaries for the cube with variable 
thermal conductivity and thermal sources
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source in this example. The discrete process of real boundaries of the first subdomain is similar 
to Example 1. The virtual or real boundaries of other subdomains are similar to the first subdo-
main. Each virtual or real element adopts 4 Gauss points for integration. The exact solution of 
the example is T(x, t) = [sin(πx)+ sin(πy) + sin(πz)]e–π2t [°C] [19]. Taking Δt = 0.1 second. The 

Figure 5. Schematic diagram of thermal source 
interpolation for the cube with variable thermal 
conductivity thermal sources

Figure 6. The RMES of temperature  
for Example 1

Table 1. Temperatures of the cube with variable thermal conductivity thermal sources

Co-ordinates t = 0.2 second t = 0.5 second t = 1 second

x y z Paper Exact solution Paper Exact solution Paper Exact solution

1.00 1.00 1.50 5.1387 5.1593 3.2779 3.2911 3.6902 3.7060
2.00 1.00 1.50 8.1115 8.1593 6.2517 6.2911 6.6636 6.7060
1.33 1.00 1.50 5.9402 5.9371 4.0899 4.0689 4.5001 4.4838
1.67 1.00 1.50 6.9404 6.9371 5.0900 5.0689 5.5002 5.4838
2.00 2.00 1.50 11.0128 11.1593 9.1573 9.2911 9.5694 9.7060
2.00 1.33 1.50 8.8503 8.9371 6.9993 7.0689 7.4098 7.4838
2.00 1.67 1.50 9.8222 9.9371 7.9726 8.0689 8.3832 8.4838
1.00 2.00 1.50 8.1156 8.1593 6.2554 6.2911 6.6674 6.7060
1.67 2.00 1.50 9.8236 9.9371 7.9739 8.0689 8.3845 8.4838
1.33 2.00 1.50 8.8537 8.9371 7.0024 7.0689 7.4130 7.4838
1.00 1.67 1.50 6.9409 6.9371 5.0904 5.0689 5.5006 5.4838
1.00 1.33 1.50 5.9393 5.9371 4.0891 4.0689 4.4993 4.4838
1.33 1.33 1.50 6.8403 6.7149 4.9621 4.8466 5.4561 5.2615
1.33 1.67 1.50 7.8242 7.7149 5.9389 5.8466 6.4347 6.2615
1.67 1.33 1.50 7.8232 7.7149 5.9380 5.8466 6.4339 6.2615
1.67 1.67 1.50 8.8042 8.7149 6.9135 6.8466 7.4108 7.2615
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results of the calculations are presented in half of the second cube along the z-axis in tab. 3. The 
proposed method’s stability and exactness are validated.

Table 2. Temperatures of the cube with variable thermal conductivity thermal sources, 
when changing the distance between the virtual boundary and the real boundary

Co-ordinates
Exact solution

The distance between virtual and real boundaries

x y z 0.01 m 0.15 m 0.2 m 0.5 m 1.0 m

1.00 1.00 1.50 3.7060 3.9783 3.7150 3.7139 3.7069 3.7089 

2.00 1.00 1.50 6.7060 6.7192 6.6831 6.6927 6.7062 6.7054 

1.33 1.00 1.50 4.4838 4.8114 4.5007 4.4928 4.4840 4.4841 

1.67 1.00 1.50 5.4838 5.7626 5.4926 5.4872 5.4839 5.4839 

2.00 2.00 1.50 9.7060 9.5301 9.6544 9.6811 9.7058 9.7088 

2.00 1.33 1.50 7.4838 7.4782 7.4470 7.4673 7.4836 7.4838 

2.00 1.67 1.50 8.4838 8.4524 8.4395 8.4656 8.4835 8.4839 

1.00 2.00 1.50 6.7060 6.7291 6.6836 6.6929 6.7061 6.7065 

1.67 2.00 1.50 8.4838 8.4649 8.4396 8.4656 8.4835 8.4841 

1.33 2.00 1.50 7.4838 7.4934 7.4475 7.4674 7.4836 7.4838 

1.00 1.67 1.50 5.4838 5.7645 5.4926 5.4872 5.4839 5.4839 

1.00 1.33 1.50 4.4838 4.8111 4.5005 4.4927 4.4840 4.4837 

1.33 1.33 1.50 5.2615 5.6338 5.4656 5.4675 5.4681 5.4682 

1.33 1.67 1.50 6.2615 6.5493 6.4518 6.4568 6.4583 6.4582 

1.67 1.33 1.50 6.2615 6.5440 6.4516 6.4569 6.4585 6.4585 

1.67 1.67 1.50 7.2615 7.4703 7.4394 7.4480 7.4506 7.4506 

              Example 2. The cuboid of three subdomains with variable boundary conditions and starting temperature.

Figure 7. The calculation model of the cuboid 
of three subdomains with variable boundary 
conditions and starting temperature

Figure 8. Schematic diagram of virtual  
boundaries for only the first 
subdomain of Example 2
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Table 3. Temperatures of the cuboid of three subdomains with 
variable boundary conditions and starting temperature

Co-ordinates t = 0.1 second t = 0.4 second t = 0.8 second t = 5 seconds

x y z Paper Exact 
solution Paper Exact 

solution Paper Exact 
solution Paper Exact 

solution
1 1 1.5 –0.9050 –0.9060 –0.6731 –0.6738 –0.4535 –0.4540 –0.0072 –0.0072
2 1 1.5 –0.9082 –0.9060 –0.6755 –0.6738 –0.4551 –0.4540 –0.0072 –0.0072

1.25 1 1.5 –1.5423 –1.5467 –1.1470 –1.1503 –0.7729 –0.7751 –0.0122 –0.0123
1.5 1 1.5 –1.8138 –1.8120 –1.3489 –1.3477 –0.9089 –0.9081 –0.0144 –0.0144
1.75 1 1.5 –1.5476 –1.5467 –1.1510 –1.1503 –0.7756 –0.7751 –0.0123 –0.0123

2 2 1.5 –0.9040 –0.9060 –0.6723 –0.6738 –0.4530 –0.4540 –0.0072 –0.0072
2 1.25 1.5 –1.5507 –1.5467 –1.1533 –1.1503 –0.7771 –0.7751 –0.0123 –0.0123
2 1.5 1.5 –1.8074 –1.8120 –1.3442 –1.3477 –0.9057 –0.9081 –0.0143 –0.0144
2 1.75 1.5 –1.5509 –1.5467 –1.1535 –1.1503 –0.7772 –0.7751 –0.0123 –0.0123
1 2 1.5 –0.9058 –0.9060 –0.6737 –0.6738 –0.4539 –0.4540 –0.0072 –0.0072

1.75 2 1.5 –1.5482 –1.5467 –1.1514 –1.1503 –0.7758 –0.7751 –0.0123 –0.0123
1.5 2 1.5 –1.8111 –1.8120 –1.3470 –1.3477 –0.9076 –0.9081 –0.0144 –0.0144
1.25 2 1.5 –1.5469 –1.5467 –1.1505 –1.1503 –0.7752 –0.7751 –0.0123 –0.0123

1 1.75 1.5 –1.5478 –1.5467 –1.1512 –1.1503 –0.7757 –0.7751 –0.0123 –0.0123
1 1.5 1.5 –1.8074 –1.8120 –1.3442 –1.3477 –0.9058 –0.9081 –0.0143 –0.0144
1 1.25 1.5 –1.5517 –1.5467 –1.1540 –1.1503 –0.7776 –0.7751 –0.0123 –0.0123

1.25 1.25 1.5 –2.1966 –2.1873 –1.6164 –1.6268 –1.0849 –1.0962 –0.0178 –0.0174
1.25 1.5 1.5 –2.4580 –2.4527 –1.8323 –1.8241 –1.2256 –1.2291 –0.0190 –0.0195
1.25 1.75 1.5 –2.1967 –2.1873 –1.6164 –1.6268 -1.0849 –1.0962 –0.0178 –0.0174
1.5 1.25 1.5 –2.4583 –2.4527 –1.8325 –1.8241 -1.2396 –1.2291 –0.0190 –0.0195
1.5 1.5 1.5 –2.7009 –2.7181 –2.0380 –2.0215 -1.3670 –1.3621 –0.0216 –0.0216
1.5 1.75 1.5 –2.4581 –2.4527 –1.8323 –1.8241 –1.2256 –1.2291 –0.0190 –0.0195
1.75 1.25 1.5 –2.1967 –2.1873 –1.6164 –1.6268 –1.0849 –1.0962 –0.0178 –0.0174
1.75 1.5 1.5 –2.4680 –2.4527 –1.8323 –1.8241 –1.2256 –1.2291 –0.0190 –0.0195
1.75 1.75 1.5 –2.1867 –2.1873 –1.6165 –1.6268 –1.0849 –1.0962 –0.0178 –0.0174

Conclusions

An efficient boundary meshfree computational approach, namely VBMGM, for 3-D 
multi-domain transient thermal analysis with variable thermal sources in non-homogeneous 
media is presented. The examples of the cube with variable thermal conductivity and thermal 
sources and the cuboid of three subdomains with variable boundary conditions and starting 
temperature, are calculated. The proposed method’s stability and exactness are validated.

The virtual source functions of the homogeneous solutions and the unknowable co-
efficients of the special solutions are constructed by RBFI. Unified forms of solutions of the 
temperature, the thermal flux, and the thermal source are obtained. Taking into account the 
Galerkin approach, the control equation, the boundary conditions, and continuous conditions, it 
is obtained that the detailed discrete formula of VBMGM for 3-D multi-domain transient ther-
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mal analysis with variable thermal sources in non-homogeneous media. The coefficient matrix 
of its integral equation is sparse and symmetric. 

The VBMGM has the benefits of BEM, meshfree method, and Galerkin method 
for 3-D multi-domain transient thermal analysis with variable thermal sources in non-ho-
mogeneous media. Its implementation process is shown. The proposed method is easily pro-
grammed and extended to deal with other 3-D multi-domain complex transient thermal con-
duction problems. 
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Nomenclature
c	 – specific thermal capacity, [Jkg–1°C–1]
f	 – known interpolation function
k	 – thermal conductivity coefficient, [Wm–1°C–1]
Q	 – thermal source, [Wm–3]
q	 – thermal flux, [Wm–2]
r	 – the distance, [m]
S	 – virtual boundary 
T	 – temperature, [°C]
w 	 – weighting coefficient
x 	 – point of real boundary

Greek symbols 
β	 – unknown coefficient
δ	 – variational symbol
Γ	 – real boundary
ξ	 – point of virtual boundary
ρ	 – density, [kgm–3]
φ	 – virtual source function
Ω	 – calculation domain

Topscripts

– – known value 

Superscripts

(e′)	 – the e′th 
hs 	 – homogeneous solution
(l)	 – the lth virtual sub-domain
(s)	 – the sth virtual sub-domain
ss 	 – special solution
′	 – virtual domain
* 	 – fundamental solution

Subscripts

t 	 – t moment
Δt	 – time step, [second]
t0	 – initial moment
g′	 – the g′th
1 	 – the first 
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