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This article addresses a novel anomalous relaxation model with the new general 
fractional derivative of the Sonine kernel. This operator is considered in the sense 
of general fractional derivative proposed in the work [Yang et al., General frac-
tional derivatives with applications in viscoelasticity, Academic Press, New York, 
USA, 2020]. The solution of the mathematical model is obtained with the aid of 
Laplace transform. The comparison among the classical and anomalous relax-
ation models is discussed in detail. This result is proposed as a mathematical tool 
to model the anomalous relaxation behavior of the complex materials. 
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Introduction

Recently, the general fractional calculus (GFC) has an increasing interesting from 
mathematics to engineering. History, theory and applications of the GFC were investigated 
in [1-5]. There are well-known results of the GFC, such as the Atangana-Baleanu fractional 
derivative [6], and Yang-Abdel-Aty-Cattani fractional derivative [7]. Omame et al. [8] applied 
the Atangana-Baleanu fractional derivative to give the mathematical models of the COVID-19 
and tuberculosis co-infection. Jleli et al. [9] suggested the Yang-Abdel-Aty-Cattani fractional 
derivative to propose the general fractional wave model. There are more applications in GFC  
[10, 11]. 

There are many mathematical models for the anomalous relaxation phenomena, de-
veloped by different authors, such as Mainardi [12], Metzler and Nonnenmacher [13], Tofighi 
and Golestani [14], Chen [15], de Oliveira, et al. [16], Giona, M., et al. [17], and Yang et al. 
[18]. The target of this paper is to study a general fractional derivative relaxation equation with 
the new general fractional derivative of the Sonine kernel. 
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A new general fractional derivative of the Sonine kernel

In 1884, Nikolay Yakovlevich Sonin (Sonine), a Russian mathematician proposed 
well-known Sonine functions, defined as [3, 19]

( ) ( ) ( )0 1 1

i

i

tt
i i

α
α

α

−∞

=

Θ =
Γ + Γ − +∑ (1)

and

( ) ( ) ( )
1

0
,

1

i

i

tt
i i

α
α

α

+ −∞

=

Φ =
Γ + Γ +∑ (2)

where

( ) 1

0

e dx tt x x
∞

− −Γ = ∫ (3)

is the gamma function [3], t > 0 and 0 < α < 1. 
There are [3, 19]
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where κ > 0.
The Laplace transforms of eqs. (1)-(4) are given as
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Let Lp[a, b] be the space of the integrable functions such that ϕ ∈ Lp[a, b] and 
 φ ∈ Lp[a, b], where 0 ≤ a < b < ∞. 

A general fractional integral of the function φ(t) is given as [2]
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A general fractional derivative of the function ϕ(t) is given as [2]
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where Θ(t) and Φ(t) in eqs. (13) and (14) are called the Sonine kernels.
The Laplace transforms of eqs. (13) and (14) are given as
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From eq. (17) we obtain the Sonine condition [2]
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The Riemann-Liouville fractional integral of the function φ(t) is defined as [1-3]
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The Liouville-Sonine-Caputo fractional derivative of the function ϕ(t) is defined as [1-3]
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Equation (20) is also called the Caputo fractional derivative [1-3].

A new anomalous relaxation model

Let us suggest an anomalous relaxation model
( ) ( ) ( ), 0,kD t tα µΛ + Λ = (21)

subjected to the initial condition
( ) ( )0 0 ,tΛ = = Λ (22)

where µ > 0 is the relaxation constant. 
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The Laplace transform of eq. (21) reads [3]
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are called the hot numbers. 

Thus eq. (26) becomes
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Compared with fractional and classical relaxation problems

The classical relaxation equation is given as [12]
( ) ( ) ( )1 ,D X t X tµ = (30)

subjected to the initial condition
( ) ( )0 0 ,X t X= = (31)

where µ is the relaxation constant.
The solution of eq. (30) reads [12]

( ) ( )0 e .tX t X µ−= (32)
The fractional relaxation equation is considered as [12]

( ) ( ) ( ) ,D Y t Y tαµ = (33)
subjected to the initial condition

( ) ( )0 0 ,Y t Y= = (34)
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where µ is the relaxation constant. 
The solution of eq. (33) is expressed as [12]
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is the Mittag-Leffler function [3].

Conclusion 

In this work we have proposed a novel general fractional derivative relaxation model 
for the first time. We have considered the hot numbers to represent its solution. The result is 
compared with the solutions for the classical and fractional relaxation equations. It is showed 
that this has more complex behaviors for the materials. 
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Nomenclature
t – time co-ordinate, [second]	
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