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Based on the traveling wave reduction method with a perturbed initial solution and 
the F-expansion method, a class of explicit exact solutions of the (2+1)-dimension-
al CDGKS equation are obtained through the symbolic computation. Moreover, 
both the interaction behavior between parameters and the perturbation degree 
of periodic wave and Gauss wave to rational pulse wave, and the correlation of 
parameters to the superposition degree of the interaction energy between solitary 
wave and rational pulse wave are discussed. Finally, numerical simulations are 
shown to demonstrate the mechanism of the above solutions.
Key words: (2+1)-dimensional CDGKS equation, F-expansion method,  

perturbed traveling wave solution, dynamics characteristics

Introduction

Non-linear evolution equations, such as the Caudrey-Dodd-Gibbon-Kotera-Sawada 
(CDGKS) equation, the Korteweg de Vries equation, the Kadomtsev-Petviashvili equation 
have attracted much attention in non-linear mathematical and physical fields, because solitary 
wave solutions of the equations play an important role in understanding the mechanism of many 
nature phenomena. To study soliton solutions of these equations, many classical methods, for 
example, the inverse scatter method, Darboux transformation method and Hirota bilinear meth-
od have been proposed and some new methods are still being developed [1, 2].

In this paper, we focus on the (2+1)-dimensional CDGKS equation:
6 3 2 3 2

236 15( ) 45 5 15( ) 5 0xt x x x x y xx x x x y y
u u u u u u u u u u+ + + - - - = (1)

which was firstly proposed by Konopelchenko and Dubrovsky [3]. The equation has widely 
applied in non-linear sciences such as the conservative flow of Liouville equation, dimensional 
gauge field theory of quantum gravity and theory of conformal field, and many investigations [4-
7] are conducted on it. Recently, through Hirota bilinear form of eq. (1), some lump solutions, a 
strip soliton, a pair of resonance solitons as well as the rogue wave have been obtained in [8] and 
Deng et al. [9] studied the interaction phenomenon between the lump waves and stripe solitons. 
They obtained the lump-single stripe soliton interaction solutions, and showed that the one stripe 
soliton can split into a lump and a stripe soliton. Based on the conjugate transformation and 
long-wave limit method, diverse soliton and interaction solutions of some solitons were obtained 
and their dynamic behaviors were analyzed by Zhuang et al. [10]. Interestingly, Fang et al. [11] 
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found the fusion and fission phenomena in the interaction between lump solitons and one-stripe 
soliton of eq. (1). By means of Bernoulli sub-equation function method, exact traveling-wave 
and some new oscillating solutions to CDGSK are also observed [12]. 

In this work, we discuss the perturbed traveling wave solutions of CDGKS eq. (1) by 
applying the traveling wave reduction method with a perturbed initial solution and the F-ex-
pansion method. Meanwhile, numerical simulations have shown the dynamics evolution char-
acteristics of the solutions.

Reduction of the CDGKS eq. (1)

Assume that eq. (1) has the traveling wave solution:
( )u ax by h t= + + (2)

and consider the traveling wave transformation:
1 2 3( ) ( ),u v ax by h t k x k y k tξ ξ= + + + = + − (3)

where a, b are different perturbed parameters, respectively, and ki (i = 1, 2, 3) also are different 
constants. Substituting eq. (3) into eq. (1), one can get the non-linear ordinary differential equa-
tion for function n (ξ):

	

6 3 4

2

4 3 6 5 2 2
1 1 1 1 1 2 1

2 2 2 2
1 1 2 1 1 3 2

15 ( ) 15 ( ) +5 (3 ) 3(v )

(45 15 15 36 5 ) 0

k v k v k v v k ak k k v

a k ak k bk k k k v

ξ ξ ξ ξ ξ ξξ ξ ξ

ξ

 + + − + + 
+ − − − − =

	  
	 Then integrating it with ξ, we have:

3

3 5

4 3 2 2 5 2 2 2 2
1 1 1 2 1 1 1 2 1 1 3 2

3 6
1 1 2 1

15 15 (3 ) (15 45 15 15 36 5 )

5 (3 ) 0

k v k ak k v k v a k ak k bk k k k v

k ak k v k v C
ξ ξ ξξ

ξ ξ

+ − + + − − − − +

+ − + + = (4)
where C is the constant of integration. Setting n′(ξ) = w(ξ), we get:

2

4 3 2 2 6 (4) 3 2
1 1 1 2 1 1 1 2 1

2 2 2
1 1 2 1 1 3 2

15 15 (3 ) 5 (3 3 ) ''
(45 15 15 36 5 ) 0

k w k ak k w k w k ak k k w w
a k ak k bk k k k w C

+ − + + − + +

+ − − − − + = (5)

and expand w(ξ): 
2

0 1 2( ) ( ) ( )w p p f p fξ ξ ξ= + + (6)
where pi, (i = 0, 1, 2) are the constant to be determined later, p2 ≠ 0, and the function f (ξ) sat-
isfies:

2 2 3 4
0 1 2 3 4[ ( )] ( ) ( ) ( ) ( )f s s f s f s f s fξ ξ ξ ξ ξ′ = + + + + (7)

where s1 ∈ R, (i = 0, 1, 2, 3, 4)
Next, substituting eqs. (6) and (7) into eq. (5), we obtain the equation for the undeter-

mined function f (ξ):
2 3 4 5 6

0 1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( ) 0c c f c f c f c f c f c fξ ξ ξ ξ ξ ξ+ + + + + + = (8)
where

	

( )
( )

6 6 2 5
0 1 1 0 3 1 2 1 2 0 2 1 1 0 1 1 2 0

4 3 3 2 2 2
1 1 1 2 0 0 1 0 2 1 1 2 2 0 1 0 2 0

2
1 0 2 3 2 0

1 3 13 8 15 2
2 2 2

1 115 2 5 9 2  + 15 3
2 2

3 5 12 5

c k p s s s s k p s s s k p p s p s

k ap s ap s p k ap k p s k p s k p a b k p

k p ak k k p C

     = + + + + + +     
     

   + + + − − + + − − −   
   

− + − +
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6 2 6 5
1 1 1 0 4 1 3 2 1 2 0 3 1 2 1 0 1 2 2 1

5 4 2
1 1 1 1 2 0 1 2 1 2 1 0 1

3 2 2 2
1 2 1 2 0 1 2 2 1 1 1 2 0 1 1 2 3 2

912 15 (2 ) 15 ( 3 )
2
115 2 15 (3 3 3 )
2

5 ( 18 3 ) 15 ( 3 2 ) 3 (5 12 ) 5

c k p s s s s s k p s s s s k p p s p s

k p p s p s k ap s ap s p p

k k p s ap p k p s k p b a k p k p ak k k p

 = + + + + + + + 
 

 + + + + + − 
 

− − + − − + − + − 1

6 6 2 5 2 2
2 1 1 1 4 2 3 1 2 0 4 1 3 2 1 1 2 1 2 1 2 0

5 4 2
1 0 1 3 2 2 1 1 3 2 2 0 0 2 1

3 2 3
1 0 2 1 1 2 1 3 2 2

1 715 2 (36 21 8 ) 15 2
2 2

3 315 4 15 4 3 ( )
2 2

345 (2 ) 5 +4
2

c k p s s s s k p s s s s s k p s p p s p s

k p p s p s k a p s p s p p p p

ak p p p k k p s p s

   = + + + + + + + +   
   

    + + + + + + +        
+ + − 


2 2 2
1 2 2 0 2 1

2
1 2 2 3 2 2

15 (3 ) (2 + )

3 (5 +12 ) 5

k p a b k p p p

k p ak k k p

  + − − −  
− −

	

2 4 2
3 1 1 1 2 4 3 2 1 4 2 3

3 2 2
1 0 1 4 0 2 3 1 3 1 2 2 2 1

2 2
1 1 4 2 3 1 0 2 1 1 2 1 4 2 3 1 2 1 2

5 [ ( (8 3 ) 2 (18 13 )]
2

3 (4 10 3 10 6 )

6 [ (2 5 ) (6 )] 2 (2 +5 ) 12 (3 )

c k k p s s s p s s s s

k p p s p p s p s p p s p s

k a p s p s p p p p k k p s p s p p ak k

= + + + +

+ + + + + +

+ + + + − + −

	

4 2 3 3
4 1 1 1 3 4 2 2 4 2 3 1 1 1 4 2 3 1 2 0 4 2 2

2
1 2 1 4 2 1 0 2 1 1 2 2 1 4 2

15= [ (4 16 7 ) (4 13 ) 4 (3 2 )
2

6 (2 ) 2 (2 + )]

c k k p s s p s s p s k p p s p s k p p s p s

k p ak s ap k p p k p k p k s p

+ + + + + + +

+ + + + −

	
4 2 2

5 1 1 4 1 4 2 3 1 2 1 4 2 3 1 23 8 ( 7 ) 5 (8 5 ) 15c k k s p s p s k p p s p s p p = + + + + 

and

	
4

6 1 2 2 1 4 2 1 415 ( 4 )( 2 )c k p p k s p k s= + +
Since f (ξ)i (i = 1, 2, 3, 4, 5, 6) is independent of linearity, pi (i = 0, 1, 2) and  

ki (i = 0, 1, 2) would satisfy:
0 1 2 3 4 5 6 0c c c c c c c= = = = = = = (9)

When

	

4 3 2
1 1 0 2 4 3 1 2 3 1 4

3
1 0 1 1 3 0 4 2 0 2 0

{ [ ( 3 ) (2 3 )]

(3 [ 4 ) (15 4 )] 15 } 0

C k k s s s s s s s s s

k p k s s s s s p s p

+ − + − +

+ − + + + =

 C ∈ R, and s2
3 + s2

4 ≠ 0, solving the eq. (9) leads:

{ }
, 2

1 1 3 2 1 4 2 1 1 0 1 2

4 2 2 21
3 1 1 3 0 4 2 1 0 1 2 0 2 1 0

2 , (3 3 )

( 4 3 ) 5 (4 6 3 ) 3 (3 )
12

p k s p k s k k a k p k s
kk k s s s s s k p k s p as a k p a b

= − = − = + +

 = − − + + + + + + + 
(10)

where a, b, p0, s0, s1, s2 are different parameters, k1 ≠ 0, s
2
3 + s2

4 ≠ 0. Therefore, we get:
2

0 1 3 1 4( ) ( ) 2 ( )w p k s f k s fξ ξ ξ= − − (11)

where
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{
}

2 4 21
1 1 1 0 1 2 1 1 3 0 4 2

2 2
1 0 1 2 0 2 1 0

(3 3 ) ( 4 3 )
12

5 (4 6 3 ) 3 (3 )

kk x k a k p k s y k s s s s s

k p k s p as a k p a b t

ξ = + + + + − + +

 + + + + + + 

Perturbed traveling wave solutions of the CDGKS equation

For the simplicity, here we only discuss some traveling wave solutions with an initial 
perturbation for s3 = 0, s4 ≠ 0.

Case I. If s0 = s1 = 0, s2 > 0, s3 < 0, eq. (7) has the bell-shaped soliton solution:

	
( )2

2
4

( ) sechsf s
s

ξ ξ
−

=

According to the transformation eq. (6), the solution of eq. (5):

	 ( )2
0 1 2 2( ) 2 sechw p k s sξ ξ= +

and the corresponding solution of eq. (4):

	
( ) ( )

( )
1 2 22

0 1 2 2 0

2

2 sinh
( ) 2 sech d

cosh

k s s
v p k s s p C

s

ξ
ξ ξ ξ ξ

ξ
 = + = + + ∫

Thus, one can get the solution of the CDKGS eq. (1):

( )
( )

1 2 2

1 0

2

2 sinh
( , , ) ( )

cosh

k s s
u x y t p C ax by h t

s

ξ
ξ

ξ
= + + + + + (12)

where

	

(

{ }

2
1 1 0 1 2

4 2 2 2 2
1 2 1 0 1 2 0 2 1 0

(3 3 )

3 5 (4 6 3 ) 9 3
12

k x y a k p k s

t k s k p k s p as ak p a b

ξ = + + + +

 + + + + + + +   

Case II. If s0 = s1 = s2 = 0, s4 > 0, eq. (7) has the rational solution:

 	 4

1( )f
s

ξ
ξ

= −

It follows from eq. (6) that eq. (5) has the solution w(ξ) = p0 – 2k1/ξ 2, and the solution 
of eq. (4) is:

	
1 1

0 02

2 2( ) dk kv p p Cξ ξ ξ
ξξ

 
= − = + + 

 
∫

Certainly, we get the solution of CDKGS eq. (1):
1

2 0
2( , , ) ( )ku x y t p C ax by h tξ
ξ

= + + + + + (13)

where

	
2 2 2

1 1 0 1 0 1 0
5(3 3 ) (6 9 3 )
12

tk x y a k p k p ak p a bξ  = + + + + + +  
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Case III. If

	

2
2

0 1 2 4
4

, 0, 0, 0
(4 )

ss s s s
s

= = < >

eq. (7) has the kink soliton solution:

	

2
2

4

( ) tanh
(2 ) 2

sf s
s

ξξ
 −

= −  
 

Similarly, from the transformation eq. (6), the solution of eq. (5) is obtained:

	

2
0 1 2 2( ) tanh

2
w p k s s ξξ

 
= + −  

 

and the solution of eq. (4)

	

2
2

0 1 2 2 0 1 2
2

2 2

2 2

tanh
2

( ) tanh d
2

2

ln tanh 1 ln tanh 1
2 2

2 2
2 2

s
v p k s s p k s

s

s s

C
s s

ξ
ξξ ξ ξ

ξ ξ

  
−        = + − = − +     −    




      
− − − +                    + − +
− − 




∫

Then, the solution of the CDKGS eq. (1) can be derived:

22

3 0 1 2
2 2

2

2

ln tanh 1tanh
22

( , , ) +
2

2 2

ln tanh 1
2

( )
2

2

ss
u x y t p k s

s s

s

C ax by h t
s

ξξ

ξ

ξ

    
− − −             = − −

− −



  
− +        − + + + +
− 




(14)

where

	

(

{ }

2
1 1 0 1 2

4 2 2 2 2
1 2 1 0 1 2 0 2 1 0

(3 3 )

2 5 (4 6 3 ) 9 3
12

k x y a k p k s

t k s k p k s p as ak p a b

ξ = + + + +

 + + + + + + +   
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Case IV. If

	

2
2

0 1 2 4
4

, 0, 0, 0
(4 )

ss s s s
s

= = > >

eq. (7) has the triangle solution:

	 ( )
2

2
4

( ) tan
2 2
sf s
s

ξξ
 

=   
 

In the same way, we have the solution of eq. (5):

	
2

0 1 2 2( ) tan
2

w p k s s ξξ
 

= −   
 

and the solution of eq. (4)

	

2
0 1 2 2 0 1 2 2 2( ) tan d 2 tan arc tan tan

2 2 2
v p k s s p k s s s Cξ ξ ξξ ξ ξ

          = − = − − +                            
∫
Further, we also have the solution of CDKGS eq. (1):

4 0 1 2 2 2( , , ) 2 tan arc tan tan ( )
2 2

u x y t p k s s s C ax by h tξ ξξ
      = − − + + + +                

(15)

where

	

(

{ }

2
1 1 0 1 2

4 2 2 2 2
1 2 1 0 1 2 0 2 1 0

(3 3 )

2 5 (4 6 3 ) 9 3
12

k x y a k p k s

t k s k p k s p as ak p a b

ξ = + + + +

 + + + + + + +   
Case V. If

	

2 2
2

0 1 22 2
4

, 0, 0
(2 1)

s ms s s
s m

= = <
+

eq. (7) has the periodic solution:

	

2
2 2

2 2
4

( ) sn
( 1) 1
s m sf

s m m
ξ ξ

 
= − −  + + 

Similarly the solution of eq. (5):

	

2
21 2 2

0 2 2

2( ) sn
1 1

m k s sw p
m m

ξ ξ
 

= + −  + + 

and the solution of eq. (4)

	

2 2
2 21 2 2 1 2 2

0 02 2 2 2

2 2( ) sn d sn d
1 1 1 1

m k s s m k s sv p p C
m m m m

ξ ξ ξ ξ ξ ξ
    

= + − = + − +       + + + +     
∫ ∫

Consequently, we get the solution of CDKGS eq. (1):
2

21 2 2
5 0 2 2

2( , , ) sn d ( )
1 1

m k s su x y t p C ax by h t
m m

ξ ξ ξ
 

= + − + + + +  + + 
∫ (16)
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where

	

(

})

2
1 1 0 1 2

2
4 2 2 2 2

1 2 1 0 1 2 0 2 1 02 2

(3 3 )

43 5 (4 6 3 ) 9 3
12 (2 1)

k x y a k p k s

t mk s k p k s p as ak p a b
m

ξ = + + + +

    + − + + + + + +    +  

Dynamic evolution characteristics

We mainly describe the dynamic behavior of solution eq. (13) and solution eq. (15) of 
CDKGS eq. (1) on the plane y = x.

Case I. Perturbed structure of the periodic wave to the rational impulse wave. 
In eq. (13), if p0 = 1, a = 0.65, b = 2, C = 2, h(t) = 28cos(4t), and k1 takes 0.8, 1.6, 

and 2.4, respectively, the dynamic behavior of the periodic wave to the rational impulse wave 
is illustrated in fig. 1. It is clear that the perturbation degree of periodic wave to rational pulse 
wave has significant positive correlation with the parameter k1 :

 
Figure 1. Perturbed structure of the periodic wave to the rational impulse wave with different k1 

Case II. Perturbed structure of the Gauss wave to the rational impulse wave. 
In eq. (13), if k1 = 0.5, a = 2, b = 1, C = 0, h(t) = 24exp(–t2/2), and p0 takes 0.5, 1.0, and 

1.5, respectively, the dynamic behavior of the Gauss wave to the rational impulse wave is also 
shown in fig. 2. Obviously, it can be seen that the perturbation degree of Gauss wave to rational 
pulse wave is negatively correlated with the parameter p0. 

 
Figure 2. Perturbed structure of the Gauss wave to the rational impulse wave with different p0 

Case III. Perturbed structure of the periodic wave to the periodic wave.
In eq. (13), if k1 = 0.5, s2 = 0.5, a = 0.5, b = 0.5, C = 0, h(t) = 24cos(t/2)2, and p0 takes 

0.06, 0.07, 0.08, 0.09, and 0.10, respectively, the dynamic behavior of the periodic wave to the 
periodic wave is also given in fig. 3. We can see that in a certain range, the parameters p0 has 
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certain correlation with the superposition energy evolution of periodic waves in two directions, 
that is, positive correlation when p0 < 0.08 and negative correlation when p0 > 0.08.

 
Figure 3. Perturbed structure of the periodic wave to the periodic wave with different p0 

Conclusion

By the traveling wave reduction with the initial perturbation of the (2+1)-dimensional 
CDGKS equation, the F-expansion of the reduction equation is obtained, and a series of ex-
plicit exact solutions of the equation with the initial perturbation are derived. The correlation 
between the perturbation degree and parameters of the periodic wave, the Gauss wave to the 
rational pulse wave, and the correlation between parameters and the superposition degree of 
energy of interaction between the solitary wave and the rational pulse wave are also analyzed, 
respectively. All solutions obtained in this paper contain the perturbed initial solutions of any 
time function, which indicates the rich dynamic characteristic of the CDGKS equation.
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Nomenclature
t – time, [second]					     x, y, z– co-ordinates, [m]
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