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This research aims to propose a numerical scheme for solving boundary value 
problems. It is a two-stage, third-order accurate scheme known as a predictor-
corrector scheme. The two main results are finding the region of the scheme 
where it is stable and determining the stability criterion for a set of linearized 
first-order differential equations. In addition, a mathematical model for heat and 
mass transfer of Darcy-Forchheimer flow of non-Newtonian nanofluid over the 
sheet is presented. The similarity transformations reduce PDE into a system of 
ODE for easier manipulation. The results are compared with the past research 
and those obtained by MATLAB SOLVER BVP4C. The results show that the 
velocity profile slightly decays by enhancing the Weisenberg number.  
Key words: proposed numerical scheme, stability, non-Newtonian fluid,  

Darcy-Forchheimer flow, shooting method 

Introduction 

There are several applications of non-Newtonian liquids which serve as mechanical 
processes in engineering industries. Categories of non-Newtonian fluid into shear thickening 
and shear thinning impart variations during heat transport operations. Therefore, one can 
focus on the heat transport attribute of non-Newtonian fluids to enhance the thermal 
conducting efficiency of such fluids. A detailed understanding of the fundamentals of physical 
principles and rheological properties governing fluid-flow provides insight into the limitations 
and delimitations of liquid flow. Such processes are often described as modelling with a 
strong theoretical background. Mathematical modelling has shown that a reduction in the 
experimental data needed to evaluate the effect of process variables can be achieved by 
achieving an agreement between theory and experiment for the free-draining flow. In Peralta 
et al. [1], researchers set out to develop a mathematical model for the free-draining flow 
during the draining stage of a dip-coating process on a finite vertical plate using the Carreau-
Yasuda model fluid and then locate analytical solutions for the corresponding fluid-dynamic 
variables. 
–––––––––––––– 
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Khan et al. [2] examines the dynamical behavior of a binary mixture embedded in a 
porous material as it moves through a thermal radiation field and a non-Newtonian fluid with 
heat source/sink features. Non-Newtonian viscoelastic fluid turbine disk cooling is analyzed 
using the homotopy analysis method [3]. In Mahmood et al. [4], the Carreau Yasuda fluid 
model is tested in a lid-driven cavity and channel with an obstruction, with kinetic energy 
measurements and drag and lift coefficients. 

In Khan et al. [5], the Carreau-Yasuda fluid-flow is represented using an energy 
equation considering the Soret and Dufour effects on a porous surface. The Lattice Boltzmann 
method models thermo-solutal natural convection and entropy production in a cubic cavity 
filled with a non-Newtonian Carreau-Yasuda fluid [6]. Over a deformable sheet, in Khan et 
al. [7], consider the incompressible flow of a non-Newtonian fluid (Carreau-Yasuda fluid). 
The concept of a porous media is examined. Activation energy is taken into account for 
chemical reactions that take place on a sheet's surface. 

Several industrial situations, like removing wastes from tubes, reservoirs, or tanks 
and a stage of batch dip-coating, observe a physical phenomenon named free-draining flow 
[8-11]. Fluid drainage can thin a surface by covering whatever it drains off. This is crucial for 
regulating the final film quality using a dip-coating technique [8, 12]. 

For this reason, theoretical analysis can be a cost-effective means of evaluating 
potential coating options [13]. Analytical solutions are currently viewed as a viable option for 
solving mathematical problems due to their desirable characteristics [14]. 

Eley et al. [15] suggested that it is arduous to use a mathematical expression to 
prove a connection between the transport phenomenon and the rheological behavior of 
governing fluid during the coating process. A huge effort has been made to find a new 
analytical solution for solving mathematical models that can narrate fluid thermal convection 
factors like velocity and film thickness profiles. Incorporating these elements into an 
expression, an equation accurately represents the rheological behavior of an unusual fluid 
throughout the dip-coating process drainage phase.  

A profound work is done by [16, 17] to reckon the steady state viscosity of a non-
Newtonian fluid through a well-known model named The Carreau-Yasuda model [18] 
suggested a continuum mechanics foundation for this contrary. It is an empirical rheological 
model. Fluids are described as a dispersion of particles in which Brownian and hydrodynamic 
forces are the principal interacting forces [19, 20] and can be classified as either a dispersed or 
continuous phase material [21].  

Hall and Ohmic effects in an asymmetric channel on the Carreau-Yasuda model 
were investigated by [22]. Flow behavior of the Carreau-Yasuda model with Hall effects 
subject to curved channel was observed by [23], whereas [24] examined the flow of Carreau-
Yasuda fluid with the free draining flow on a vertical plate. In Rehman et al. [25], the authors 
examine the effect of Soret and Dufour on electroosmotic forces in the flow of Casson fluid 
towards a stretchy sheet. For a family of non-linear impulsive nabla fractional difference 
equations of order alpha, we prove sufficient criteria on the existence and uniqueness of 
solutions in [26]. For the second-order iterative dynamic boundary value problem with mixed 
derivative operators, the authors of [27] construct adequate conditions for the existence and 
uniqueness of solutions. 

Various numerical methods have been proposed to study boundary-layer flows in the 
literature. Sometimes, with the help of suitable transformations, the governing equations of 
boundary layer flows can be written as an ODE or system of ODE. This system of ODE is 
required to solve by some analytical or numerical scheme. Various authors have employed 
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shooting methods based on Runge-Kutta methods from these discussed cases of  
boundary-layer flows. This contribution proposes a numerical scheme for solving linear and 
non-linear scalar and system ODE. The scheme is employed for solving the system of 
boundary value problems. This system is obtained by transforming the system of equations 
governing heat and mass transfer of non-Newtonian nanofluid-flow over a moving sheet. 

Proposed numerical scheme  
This article discusses a numerical technique for resolving ODE. The scheme is two-

stage. The first stage of the scheme is an extended form of the classical forward Euler scheme 
using Taylor series expansion. The first stage of the scheme finds the solution at ith grid point 
and uses the information of the given differential equation at the (i – 1)th grid point. But the 
solution at this ith grid point is updated in the next stage. The first stage of the scheme is just a 
predictor stage, and the corrector stage is the second stage. So in the second stage, the solution 
of the given differential equation is calculated with some particular accuracy. To begin the 
numerical scheme construction procedure, consider the following differential equation: 
 y′ = f(y) (1) 

subject to the initial condition: 

 y = α1 (2) 

where α1 is constant 

For solving eq. (1), the first stage of the scheme can be expressed: 

 2
1 1 1i i i iy y hy h y− − −′ ′′= + +  (3) 

where ′ shows a derivative with respect to the independent variable. The h shows the step size. 
This stage requires the computation of the second derivative dependent variable. The second 
stage, or the corrector stage of the scheme, is expressed: 
 1 1( )i i i i iy y h ay by cy− −′ ′ ′= + + +  (4) 

where a, b, and c are unknown to be determined by employing Taylor series expansion to 
eq. (4). For doing so, consider a Taylor series expansion for yi–1 and y′i–1:  

 
2 3

4
1 ( )

2 6ii i i i
h hy hy y y Oy h− ′ ′′ ′′′+ + + +=  (5) 

 
2

3
1 ( )

2i ii i
hy hyy y O h−′ ′′ ′′′+ + +′=  (6) 

Substituting eqs. (3), (5), and (6) into eq. (4), yields: 

 
2 3 2 2

2 6 2 2i i i i i i i i i i i
h h bh chy y hy y y h ay by bhy y cy y

 
′ ′′ ′′′ ′ ′ ′′ ′′′ ′ ′′′− + − + + − + + +


= 


 (7) 

Equating coefficients of 2 3, , andi i ihy h y h y′ ′′ ′′′ on both sides of eq. (7), it gives: 

 0 = –1 + a + b + c (8) 
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 10
2

b= −  (9) 

 10
6 2

c
= +  (10) 

By solving eqs. (8)-(10), yields: 

 2 1 1, ,
3 2 6

a b c= = =  (11) 

Thus the corrector stage of the proposed scheme for solving eq. (1) is:  

 1 1
2 1 1
3 2 6i i i i iy y h y y y− −

 ′ ′′ ′= + + − 
 

 (12) 

By looking at eq. (1), predictor and corrector stages, respectively, are:  

 2
1i i i iy y hf h f− ′= + +  (13) 

 1 1
2 1 1
3 2 6i i i i iy y h f f f− −

 = + + − 
 

 (14) 

where fi = f(yi) and f′i is derivative of f with respect to independent variables. 

Scalar stability  

We can determine where the proposed scheme for eq. (1) is most stable using 
linearization. The linearized equation is: 

 y′ = λy (15) 

After implementing the first step of the suggested scheme, from eq. (15) we get: 

 2 2 2 2
1 1 1 1(1 )i i i i iy y h y h y h h yλ λ λ λ− − − −= + + = + +  (16) 

Employing the second stage of the proposed scheme to eq. (15), which yields: 

 1 1
2 1 1
3 2 6i i i i iy y h y y yλ λ λ− −

 = + + − 
 

 (17) 

Substituting eq. (16) into eq. (17) and letting z = λh leads to: 

 2
1 1

2 1 1 (1 )
3 2 6i i i iy y zy zy z z z− −
 = + + − + +  

 (18) 

Re-write eq. (18) as:  

 
2

1
1 11 (1 )
2 6

21
3

i

i

z z z z y
y

z

−+ − + +
=

−
 (19) 
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The stability condition is expressed: 

 
21 11 (1 )

2 6 121
3

z z z z

z

+ − + +
<

−
 (20) 

where z = λh. 

Stability for the matrix-vector equation 

The goal is to determine whether or not a set of linear first-order differential 
equations is stable. Consider the following matrix-vector equation: 

 u Au′ =
   (21) 

where u  is a vector of order 3 × 1 and A – a matrix of order 3 × 3. Before finding the stability 
condition, a proposed scheme will be applied to solve eq. (21), so employing the first stage of 
the proposed scheme and using the Gauss-Seidel iterative method on eq. (21) it yields: 

 1 1 1 2 2 1
1 1 1u u Au A uk k k k

i i i ih h+ + + +
− − −= + +

     (22) 

Applying the second stage, or corrector stage on eq. (21), is obtained: 

 1 1 1 1
1 1

2 1 1u u Au Au Au
3 2 6

k k k k k
i i i i ih+ + + +

− −
 = + + − 
 

      (23) 

In the initial procedure of stability analysis following transformation is considered: 

 
1 1 1 ( 1)

1
1 1

u E , u E

u E , u E

k iI k k i I
i i

k k iI k k iI
i i

e

e e

ψ ψ

ψ ψ

+ + + −
−

+ +

= =

= =

 

 

 

 

 (24) 

where 1.I = −   
Substituting some of the transformations from eq. (24) into eq. (22) yields:  

 1 1 1 ( 1) 2 2 1 ( 1)E E AE A Ek iI k iI k i I k i Ie e h e h eψ ψ ψ ψ+ + + − + −= + +
   

 (25) 

Dividing both sides of eq. (25) by eiIψ and resulting equation becomes: 

 1 1 1 2 2 1E E AE A Ek I k k I k Ie h e h eψ ψ ψ+ − + + − + −= + +
   

 (26) 

Substitute the relevant transformation from eq. (24) into eq. (23) and divide both 
sides of the equation by eiIψ, obtains: 

 1 1 1 12 1 1E E AE AE AE
3 2 6

k I k k k I ke h eψ ψ+ − + + − + = + + − 
 

    

 (27) 

Using eq. (26) in eq. (27) gives: 

 1 1 1 1
1

2 1 1E E AE AE AA E
3 2 6

k I k k k I k Ie h e eψ ψ ψ+ − + + − + − = + + − 
 

    

 (28) 
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where A1 = I · D + hA + h2A2, and ID is an identity matrix of order 3 × 3. 

 1
1

1 2I·D I·D hA AA E AE
2 6 3

I I I k khe e e hψ ψ ψ− − − + − − + = 
 

 

 (29) 

The stability conditions can be expressed: 

 

1

A

A AA

2
3 111

2 6
I I I

h

he h e eψ ψ ψ

λ

λ λ− − −
<

− − +
 (30) 

where λA and λAA1 are respectively eigenvalues of A and AA1. 

Problem formulation  

Consider the steady laminar, 2-D, and incompressible Carreau Yasuda nanofluid-
flow over the moving sheet. Let u and v be a horizontal and vertical component of the 
velocity. The x-axis is taken along the plate, and y-axis is perpendicular to x-axis. The flow is 
generated by the sudden movement of the plate along the positive x-axis. Let the moving 
velocity be presented by uw. Let T and C be the temperature of the fluid and concentration, 
respectively. The Tw and Cw are temperature and concentration at the wall and T∞ and C∞ 
denotes the temperature and concentration away from the plate. We have a conducting, 
magnetic fluid if the fluid conducts electricity and the magnetic field is supplied perpendicular 
to the motion.  

Consider the Darcy Forchheimer characteristic, and under the assumption of 
boundary layer theory and following [28], the equations that describe flow phenomena are:  

 0u v
x y
∂ ∂

+ =
∂ ∂

 (31) 

 
2 2

2 2
2 2

1 ( 1)
d

d
o

p

u v v n u u vu v v v d B u u Fu
x y d y ky y

σΓ
ρ

∂ ∂ ∂ − ∂ ∂   + = + + − − −   ∂ ∂ ∂ ∂ ∂  
 (32) 

 
2 22

2
1 d

d

p p

T T T u n u uu v
x y c y c d y yy

µ µα Γ
ρ ρ

∂ ∂ ∂ ∂ − ∂ ∂      + = + +      ∂ ∂ ∂ ∂ ∂ ∂      
 

 
2 1T r

B
p

D qC T TD
y y T y c y

τ
r∞

  ∂∂ ∂ ∂ + + −  ∂ ∂ ∂ ∂   
 (33) 

 
2 2

12 2 ( )T
B

DC C C Tu v D k C C
x y Ty y ∞

∞

∂ ∂ ∂ ∂
+ = + − −

∂ ∂ ∂ ∂
 (34) 

subject to the boundary conditions: 

 w w w, 0, , , when 0
0, , , when 

u U v T T C C y
u T T C C y∞ ∞

= = = = =

→ → → →∞
 (35) 

To reduce eqs. (31)-(35) into the dimensionless system of equations, the following 
transformations are considered: 
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w w

, , , ,T T C Ca y u axf v av f
v T T C C

η θ f∞ ∞

∞ ∞

− −′= = = − = =
− −

 (36)  

Under transformation (36), eqs. (32)-(35) are reduced to: 

 2 21( 1)( )d d
e r

nf ff f d W f f Mf f F f
d

β−′ ′′ ′′′ ′′′ ′′ ′ ′′ ′− = + + − − −  (37) 

 2 2 21 4 11 ( ) 0
3

d d
d c c e b t

r

nf R E f E W f f N N
P d

θ θ θ f θ− ′ ′′ ′′ ′′ ′′ ′ ′ ′+ + + + + + = 
 

 (38) 

 1 t

c b

Nf
S N

f f θ γf′ ′′ ′′− = + −  (39) 

subject to the dimensionless boundary conditions: 

 10, 1, (1 ), 0, when 0
0, 0, 0, when 

t bf f B N N
f

θ θ θ f h
θ f h

′ ′ ′ ′= = = − − + = =
′→ → → →∞

 (40) 

A system of the first-order differential equation is established for solving  
eqs. (37)-(40) using the proposed scheme. To do so, consider the following system of fist 
order differential equations of the form: 

 f′ = f1,   f(0) = 0 (41) 

 f1′ = f2,   f1(0) = x1 (42) 

 2 2
2 1 2 1 1 1 2 2

2

1 ( ), (0)11 ( 1)( )
r

d d
e

f f ff Mf f F f f xn d W f
d

λ′ = − + + + =
−

+ +
 (43) 

 2 2 2
1 1 2 2 2 1 1 1 1 3

1 ( ) , (0)41
3

d dr
c c e b t

d

P nf E f E W f f N N x
dR

θ θ θ f θ θ− ′ = − − − − − =  +
 (44) 

 1 4, (0) xφφφ  ′ = =  (45) 

2 2
1 1 1 2 2 2

1 ( )41
3

d dt r
c c c e

b
d

N P nS f f E f E W f f
N dR

f f θ
 −  ′ = − − − − − −   +   

 

 }2
1 1 1 5, (0)b tN N r xθφ θ φφ − − + =  (46) 

For applying a proposed numerical scheme for solving eqs. (41)-(46). To do so, 
applying the predictor stage to eqs. (41)-(46) that yields: 

 2
1 1, 1 2, 1i i i if f hf h f− − −= + +  (47) 
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2

1, 1, 1 2, 1

2, 1

·11 ( 1)( )
i i i

d d
e i

hf f hf n d W f
d

− −

−

= + +
−

+ +
 

 2 2
1, 1 1 2, 1 1, 1 1, 1 1, 1·( )i i i i i r if f f Mf f F fλ− − − − − −− + + +  (48) 

2 2
2, 2, 1 1, 1 1 2, 1 1, 1 1, 1

2, 1

[ ( ) ]11 ( 1)( )
i i i i i i r i

d d
e i

hf f f f f M f F fn d W f
d

λ− − − − − −

−

= + − + + + −
−

+ +
 

2

2 2
1, 1 1 2, 1 1, 1 1, 1

2, 1

1( 1)( )
[ ( ) )

11 ( 1)( ) (3 )

d
e

d
i i i i r i

d d
e i

nh d W
d f f f M f F f

n d W f d
d

λ− − − − −

−

−
+

− − + + + ⋅
− + + +  

 

2
2 2

1, 1 1 2, 1 1, 1 1, 1

2

[ ( ) ] ·11 ( 1)( )
i i i i r i

d d
e

hf f f M f F f n d W f
d

λ− − − − −⋅ − + + + +
−

+ +
 

{ 2 21
1 2 1, 1 1 2, 1 1, 1 1, 1

2, 1

· [ ( ) ]11 ( 1)( )

i
i i i i r i

d d
e i

ff f f f f M f F fn d W f
d

λ−
− − − − −

−

− − + + + +
−

+ +
 

 }2. 1 1, 1 2, 1( ) 2i r i iM f F f fλ − − −+ + +  (49) 

2
2 2

1 1, 1 1 1 2, 1 2, 1
1 ( )41

3

d dr
i i i i i c i c e i

d

h P nh f E f E W f
dR

θ θ θ θ +
− − − − − −

−= + + − − − −+
 

 2
1, 1 1, 1 1, 1b i i t iN Nθ φ θ− − − − −   (50) 

2 2 2
1, 1, 1 1 1 2, 1 2, 1 1, 1 1, 1 1, 1

2

1, 1 1, 1 1 1, 1 1, 1 , 1

2
1 1, 1 2, 1

1 ( )41
3

 ( 2 ) ·4 41 1
3 3

1·

d dr
i i i i c i c e i b i i t i

d

r r
i i i b i t i t c i i

d d

i i c i c

hP nf E f E W f N N
dR

h P Pf f N N N S
R R

nf E f E
d

θ θ θ θ f θ

θ f θ θ

θ

+
− − − − − − − −

− − − − − −

− − −

− = + − − − − − −  +

− − − + − −
+ +

−
− − −

2 2
2, 1 1, 1 1, 1 1, 1

1
2, 1 2

2 2
1, 1 1 2, 1 1, 1 1, 1

2, 1

( )

12 ( ) (2 )
( )11 ( 1)( )

d d
e i b i i t i

d d
c i c e

i i i i r i
d d

e i

W f N N

nE f E W d f
d f f f M f F fn d W f

d

θ f θ

λ

+
− − − −

+
−

− − − − −

−



− − −
−

+ +
 − − + + + + −

+ +


  

 

 }1, 1 1 1, 1 1, 1 1b c i i i b c i iN S f N Sθ f γ θ f− − − − −+ −  (51) 
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 {2
1 1, 1 1 1, 1

 · 41  
3

t r
i i i c i i

b

N Ph h S f
N R d

f f f f− − − −
 

= + + − − 
  + −

 

 }2 2 2
1 1, 1 2, 1 2, 1 1, 1 1, 1 1, 1 1

1·[ ( ) ]d d
i i c i c e i b i i t i i

nf E f E W f N N
d

θ θ f θ γf+
− − − − − − − −

−
− − − − − +  (52) 

 

} {

2 2
1, 1, 1 1 1 1 1, 1 2, 1 2, 1

2 2 2
1, 1 1, 1 1, 1 1 1, 1 1, 1 1 1, 1

1
1

( )1
41
3

41
3

d dt r
i i c i i i i c i c e i

b d

b i i t i i c i i c i i

t rt t r i
c i

b
b d

N P nhS f f E f E W f
dN R

N N h S f S f

N PN N P fS f
N N R

f f f θ

θ f θ γf f f

f

+
− − − − − − −

− − − − − − − −

−
−

 −
= + 

 − − − − − −
 + 
 

− − + − − +

+ +
 + 




 +



+




2 2

1, 1 1, 1 1, 1

2

2 2 2
1 1, 1 2, 1 2, 1 1, 1 1, 1 1, 1

1 1

2
·

4 4 41 1 1
3 3 3
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Applying the second or corrector stage of the proposed scheme on eqs. (41)-(47), it 
is obtained 

 1 1, 1, 1 1,
2 1 1
3 2 6i i i i if f h f f f− −

 = + + − 
 

 (54) 
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Results and discussion 

The whole domain is divided into some intervals for applying the proposed finite 
difference scheme. The length of each interval is the same. The numerical scheme is 
constructed and applied to solve the dimensionless system of boundary values problems (37)-
(40). The requirement for applying this scheme is to get first-order differential equations if the 
equation(s) is not more than first-order. The scheme is employed with the Gauss-Seidel 
iterative method for the problem considered in this contribution. The iterative method finds 
the solution of the proposed scheme's difference equation(s). As mentioned, the proposed 
scheme can only solve first-order differential equations. It can be used to solve high-order 
linear or non-linear initial value problems. A shooting procedure is utilized to apply this 
scheme to second or third order boundary value problems. But, the shooting strategy 
consumes more time to converge. It also requires another scheme for solving equations. In 
this contribution, Matlab solver solve is considered. Also, the iterative solver requires one 
initial guess to start the computations. It requires tolerance, so the iterative solver will be 
stopped when it meets the given criteria, and the final solution can be obtained.  
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Problem (37)-(40) is also solved with the MATLAB solver bvp4c. This MATLAB 
solver can solve ODE with boundary conditions. It is high-order accurate and converges fast 
in most cases. The solver is useful in this study and can be considered a verification tool for 
checking the accuracy or convergence of the solution obtained by the proposed scheme. The 
solver requires one initial guess to solve given differential equations. The MATLAB software 
also contains other solvers to solve differential equations with initial conditions. If the 
problem is boundary value, then MATLAB solvers can be considered to solve differential 
equations in a shooting manner.  

This contribution employs a numerical scheme for solving second and third-order 
boundary value problems. A shooting strategy is also employed for this study. Figure 1 shows 
the absolute error between solutions obtained by the proposed scheme and MATLAB solver 
bvp4c. The absolute error is computed by finding an absolute difference between two 
numerical values at each grid point. Figure 2 depicts the effect of the Weissenberg number 
and magnetic parameter on the velocity profile. From this fig. 2, it can be observed that the 
velocity profile de-escalates by increasing the Weissenberg number and magnetic parameter. 
The reason behind this decay due to enhancing magnetic parameters is to accelerate the 
Lorentz force that resists the particles of the fluid. 

  
Figure 1. Absolute error of proposed scheme  
and MATLAB solver bvp4c using N = 30,  
We = 0.1, n = 1.5, d = 3, M = 0.1, β = 0.1, Fr = 0.1 

Figure 2. Effect of Weisenberg number and 
magnetic parameter on velocity profile using  
N = 500, n = 1.5, d = 3, β = 0.1, Fr = 0.1;  
(a) M = 0.1 and (b) We = 0.1 

Figure 3 deliberates the effect of the inertia coefficient and porosity parameter on the 
velocity profile. Velocity profile decays by rising values of porosity parameter and inertia 
coefficient. Since growth in the porosity parameter produces more resistance in the flow and 
growth in the inertia coefficient enhances the drag force, these factors resist the flow's 
velocity, leading to decay in the velocity profile. The effect of the thermophoresis parameter 
and Eckert number on the temperature profile is depicted in fig. 4. Temperature profile 
decreases by rising values of the thermophoresis parameter and Eckert number. Since 
thermophoresis force grows by rising thermophoresis parameter, this leads to an increase in 
the process of transferring fluid particles from the surface of the plate to its surroundings. 
Shifting particles from one place to another increases the temperature profile. The Eckert 
number grows in the friction between fluid's particles and raises the temperature profile. The 
behavior of the temperature profile by variation of radiation parameter and Biot number is 
portrayed in fig. 5. Temperature profile rises by the increase in radiation parameter and 
decays by rising Biot number. The rise in temperature profile results from boosting the heat 
flux due to incoming radiation. The heat flux at the wall increases by growing Biot number, 
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which results in a rise in temperature at the wall. The concentration profile with the variation 
of the thermophoresis parameter and Brownian motion parameter is displayed in fig. 6. 
Concentration profile rises and decays, respectively, by incrementing the thermophoresis 
parameter and Brownian motion parameter. The influence of the Schmidt number and the 
reaction rate parameter on the concentration profile is seen in fig. 7. Increases in the Schmidt 
number and reaction rate parameter lead to a decreasing concentration profile. The decay in 
the concentration profile due to increasing Schmidt number is the consequence of the de-
escalation of mass diffusivity and reduces the concentration profile.  

Figure 3. Effect of inertia coefficient and porosity 
parameter on velocity profile using N = 500,  
We = 0.1, n = 1.5, d = 3, M = 0.1; (a) β = 0.1 and  
(b) Fr = 0.1 

Figure 4. Effect of thermophoresis parameter 
and Eckert number on temperature profile 
using N = 30, We = 0.1, n = 1.5, d = 3, M = 0.1,  
Fr = 0.1, β = 0.1, Nb = 0.1, Bi = 0.1, Rd = 0.1,  
Pr = 1.7; (a) Ec = 0.1 and (b), Nt = 0.1 

Figure 5. Effect of radiation parameter and Biot 
number on temperature profile using using N = 30, 
We = 0.1, n = 1.5, d = 3, M = 0.1, Fr = 0.1, β = 0.1,  
Nb = 0.1, Nt = 0.1, Ec = 0.1, Pr = 1.7; (a) Bi = 0.1 
and (b) Rd = 0.1 

Figure 6. Effect of thermophoresis parameter 
and Brownian motion parameter on 
concentration profile using N = 30, We = 0.1,  
n = 1.5, d = 3, M = 0.1, Fr = 0.1, β = 0.1, Ec = 0.1, 
Sc = 1.5, γ = 0.1; (a) Nb = 0.1 and (b) Nt = 0.1 

Table 1 shows how the proposed method stacks up against some previously 
published results. This also verifies the solutions obtained by the proposed scheme. Table 2 
shows the Weissenberg number, porosity parameter, and inertia coefficient on the skin 
friction coefficient (excluding the Reynolds number). Skin friction coefficient decays by 
growing Weissenberg number and porosity parameter values, and it grows by increasing the 
inertia coefficient. Table 3 shows how the local Nusselt number varies depending on the 
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Eckert number, the thermophoresis parameter, 
the Brownian motion parameter, and the 
radiation parameter (excluding the Reynolds 
number). For a given set of values, the local 
Nusselt number increases. Local Sherwood 
number as a function of thermophoresis, 
Brownian motion parameter, Schmidt number, 
and reaction rate parameter are shown in tab. 4 
(excluding Reynolds number). Increasing the 
Brownian motion parameter and decreasing the 
thermophoresis parameter lead to larger local 
Sherwood numbers. It does not change (up to 
four decimal places) by varying the Schmidt 
number and reaction rate parameter. 

Table 1. Numerical values of –f"(0) using β = 0 0 Fr = We = M 

kp [29] [30] Proposed 

0.0 1.000000 1.0000 1.0024 

0.5 1.224747 1.2247 1.2251 

0.1 1.414217 1.4142 1.4144 

1.5 1.581147 1.5811 1.5812 

2.0 1.732057 1.7320 1.7321 

Table 2 Numerical values of skin friction 
coefficient (excluding Reynolds number)  
using d = 3, n = 1.5, M = 0.1  

We β Fr 
1/2
e fxR C

0.1 0.1 0.1 –1.6847

0.3 –1.7036

0.1 0.3 –1.7800

0.1 0.1 0.3 –1.6667

Table 3. Numerical values for local Nusselt 
number (excluding Reynolds number) using  
d = 3, n = 1.5, M = 0.1, We = 0.1, β = 0.1, Fr = 0.1, 
Pr = 1.7, Bi = 0.1 

Ec Nt Nb Rd 1/2 Nue xR

0.01 0.1 0.01 0.01 0.0602 

0.1 0.0813 

0.01 0.3 0.0890 

0.1 0.1 0.0891 

0.01 0.1 0.0988 

Table 4. Numerical values for local Sherwood number (excluding Reynolds number) using 
d = 3, n = 1.5, M = 0.1, We = 0.1, β = 0.1, Fr = 0 

Nt Nb Sc γ 1/2She xR

0.1 0.1 1.5 0.5 –0.0872

0.3 –0.2614

0.1 0.3 –0.0291

0.1 0.1 2.5 –0.0872

0.3 0.7 –0.0872

Figure 7. Effect of reaction parameter and 
Schmidt number on concentration profile using 
N = 30, We  = 0.1, n = 1.5, d = 3, M = 0.1,  
Fr = 0.1, β = 0.1, Nb = 0.1, Nt = 0.1; (a) Sc = 2.5 
and (b) γ = 0.1(a)  
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Conclusions 

This contribution proposed a numerical scheme for solving linear and non-linear 
first-order ODE. The scheme required information on the second-order derivative of the 
dependent variable of given differential equations. The scheme has been employed to solve a 
dimensionless ODE model of ODE. The model was obtained from a mathematical model of 
non-Newtonian boundary-layer flow over the flat plate. An iterative scheme was also adopted 
to solve discretized or difference equations obtained by proposing a scheme on the considered 
system of ODE. Following this research, different applications for the current approach may 
be developed. The suggested method may solve various differential equations, including those 
found in theory and practice. It is relatively easy to implement. Following this research's 
completion, various applications for the existing method might be developed [31-35]. The 
concluding thoughts can be stated as 
• The velocity profile slightly decayed by incrementing the Weissenberg number.
• Temperature profile escalated by rising Biot number.
• Local Nusselt number escalated by growing radiation parameter.
• The concentration profile was boosted by enhancing the thermophoresis parameter.
• The results are an accurate minimum of two decimal places.
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