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As the key equipment of delayed coking unit, the coking chamber generally uses the 
cycle heating and cooling process to produce products. Due to the large tempera-
ture rise and fall process of the cycle, the coke chamber runs under harsh thermal 
conditions for a long time, and the thermal stress generated by temperature fluc-
tuation is one of the main reasons for the failure of the coke chamber structure. 
However, the working state of coking chamber is complex, and the traditional nu-
merical method cannot realize timely monitoring, so it is of great practical signifi-
cance to study the new method to realize timely monitoring. In this paper, POD-BP 
reduced order models under the second and third thermal boundary conditions are 
established by studying the coke chamber in the production process. The models 
are applied to the inversion of the spatial heat flux distribution and the calculation 
of the temperature field of the coke chamber, which greatly improves the calcula-
tion speed of the inversion. It has been proved that the proposed method has the ad-
vantages of good real-time performance, high precision, strong anti-interference 
ability and strong operability, which provides a detection method for the real-time 
reconstruction of temperature field and production state of coke chamber.
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Introduction

As the key equipment in the delayed coking device, coke chamber is widely used in 
various petrochemical enterprises [1]. The main purpose of the equipment is to convert low 
value materials such as high sulfur and high asphaltene residue into high value light component 
oil, and it can also provide coke generation function. In the process of coke chamber produc-
tion, cyclic heating and cooling process are generally included in product production. Drastic 
temperature changes will make coke chamber by greater thermal stress, in extreme cases may 
cause coke chamber deformation, induced damage, or even explosion and other accidents [2].

Therefore, it is necessary to study the temperature field of the coke chamber. Gener-
ally speaking, the temperature field of an object is affected by the external environment and the 
physical properties of the medium [3, 4]. Due to the existence of vapor, liquid and solid media 
in the coke chamber, the working conditions are complex and harsh, and it is difficult to recon-
struct the temperature field of the equipment by pyrometer, thermocouple, and optical methods 
in the traditional temperature measurement methods [5]. Through data collection and analysis, 
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it is found that the inverse heat transfer problem is one of the powerful tools to reconstruct the 
temperature field of coke chamber.

The inverse derivation of the input conditions from the output results is the solu-
tion idea of the inverse problem, which is mainly applied to obtain some parameters and 
conditions that are not easy to measure directly. The inverse problem of heat transfer is one 
direction in which the inverse problem can be applied. The inverse heat transfer problem is 
mainly used in the actual production obtain some physical parameters in the heat transfer 
model which are not easy to measure directly, or the boundary conditions which can’t be 
directly given by the model [6]. Beck et al. [7] studied the following five methods for solv-
ing the inverse thermal conductivity problem: analysis method, de Sollza method, Weber 
method, Rb method, and Hill-Hensel method. Since Beck et al. [7] proposed the concept of 
sensitivity coefficient and applied it to inverse problems, methods derived from the concept 
(such as direct sensitivity coefficient) have been successfully applied to steady-state and 
unsteady inverse heat conduction problems. Huang et al. [8] studied the inverse problem of 
multidimensional thermal conductivity by using the method of space propulsion and used 
the control volume method to solve the temperature field of complex shaped containers. 
Sladewski et al. [9] achieved temperature measurement in a furnace through an acoustic 
temperature measurement system.

Due to the ill-posed nature of the heat transfer inverse problem: the error of the tem-
perature measurement information of the external has a great influence on the inversion result 
of the temperature field. It is necessary to study the anti-ill posed method of inverse problem. 
Jaremkiewicz et al. [10] carried out temporal and spatial smoothing processing for the mea-
sured exterior wall temperature information, which greatly improved the calculation accuracy. 
Most numerical methods are applied to well posed problems and are difficult to apply to ill 
posed problems. Because the ill-posed problem is involved in this paper, a regularization meth-
od is proposed to deal with it. Regularization is one of the earlier methods used to solve ill-
posed problems. It uses prior knowledge to replace the original ill-posed problem with a similar 
well-posed problem, to restore the stability of the solution of the ill-posed problem [11]. The 
Tikhonov method was proposed by mathematician Tikhonov [12] in 1963 by establishing and 
solving the ill-conditioned inverse problem of Tikhonov functional minimum inversion, which 
is one of the most used regularization methods for solving inverse problems. Cheng et al. [13] 
adopted regularization method to solve the inverse thermal conductivity problem of relative 
scale. Yang et al. [14] simplified Tikhonov regularization method based on Holder shape stable 
solution, and numerical test results showed that the method was effective and stable. Xiong  
et al. [15, 16] proposed a generalized Tikhonov regularization method, which extended the 
application scope of Tikhonov method. Cheng et al. [17] improved a Tikhonov regularization 
method based on the order optimal solution solve the inverse thermal conductivity problem of 
the 3-D co-ordinate system. 

The inverse problem has some computational drawbacks, such as there are repeated 
forward calculation [18], and each time the traditional gradient method is used to solve the 
sensitivity calculation in real-time measurement is essential in the matrix, and to establish a 
kind of approximate model or proxy model instead of the numerical simulation process, to im-
prove the efficiency of forward calculation. Proper orthogonal decomposition (POD) reduces 
the DoF of the computational process by projecting high-dimensional space from lower order 
sub-spaces. Compared to traditional numerical calculation methods, it has the advantage of fast 
computational speed.
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Aling et al. [19] first attempted to develop a POD-Galerkin rapid heat treatment tem-
perature field modelling order reduction model based on POD and approximate inertial man-
ifold, aiming to retain a physical understanding of the relationship between the system and 
some core parameters. Alonso et al. [20] combined POD and genetic algorithm to minimize 
the residuals of the momentum and boundary conditions, and proposed a reduced-order model 
for studying back stepping heat transfer. Raghupathy et al. [21] proposed the POD-Galerkin 
reduced order model of heat transfer, and combined POD-Galerkin and finite volume methods 
to develop a reduced-order model with independent boundary conditions, and successfully im-
plemented the theory in one and two dimensions.

Through the current research on reduced order models, scholars have focused too 
much on the construction of physical field models and not enough on the approximate rela-
tionship between the input parameters and the target, resulting in an overall lack of research 
[22]. The ANN method proposed by American scientists Pitts and Meculloch in 1943 [23] is 
widely used in fault diagnosis, digital simulation and other fields. This paper intends to study a 
numerical model which has a mapping relationship between heat flux (unknown parameter) and 
space temperature or POD coefficient. This model can be used to numerically simulate the tem-
perature at all grid nodes and to obtain the corresponding computational results. This approach 
enables the measurement of data and temperature variations across the temperature domain 
of the device, which has great engineering applications. In order to address the problems that 
exist in the practice of coke oven production, an idea of combining POD and back propagation 
(BP) in the second and third thermal boundary conditions is developed, which is combined 
with Tikhonov regularization build a reduced-order model. By applying the POD-BP model 
to the Tikhonov inversion system, the speed of the inversion calculation is greatly improved at 
the cost of a small amount of accuracy, and the temperature field of the coke chamber can be 
reconstructed rapidly.

Heat transfer model of coke chamber

This chapter describes the principle of the FEM, establishes the 
physical model and mathematical model of the coke chamber, based on 
the FEM, sets the material and thermal boundary conditions of the coke 
chamber, and verifies the correctness of the finite element heat transfer 
model of the coke chamber through numerical simulation: 

 – Coke chamber geometry: The research object of this paper is a typ-
ical coke chamber. The simplified coke chamber provided by a pet-
rochemical enterprise under the thermal insulation layer is shown in 
fig. 1. Upper cylinder wall thickness δ = 28 mm, lower cylinder wall 
thickness δ = 32 mm. A simplified model of the coking chamber is 
established in space.

 – Coke chamber materials: This paper assumes that the physical pa-
rameters of the material are uniform, taking into account all the ma-
terials of the chamber body and skirt, and welding materials as metal 
Q245R. The physical parameters are shown in tab. 1.

Table 1. The physical parameters of material Q245R
Thermal conductivity Density Specific heat capacity

Value of correlation 30.96 [Wm–1K–1] 7870 [kgm–3] 465 [Jkg–1K–1]

Figure 1. Coke 
chamber model 
geometry size
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Due to the complex process of coke chamber, the medium inside 
the chamber is unstable during the working process, and all working con-
ditions of coke chamber are expressed in the form of heat flux. The heat 
flux is distributed on the inner wall of the coke chamber by interpolation 
along the height direction. The external medium of coke chamber is air, 
the convective heat transfer coefficient is 10 W/m2K, and the ambient tem-
perature is 293.15 K. 

 – Mathematical and physical models: The constructed model of coke 
chamber is shown in fig. 2, and the heat flux is evenly distributed along 
the circumferential direction. The inner wall of the coke chamber Γ1 is 
subjected to the effect of distributed heat flux, and the outer wall of the 
coke chamber Γ2 is applied with a thermal insulation layer. The outer wall 
of the thermal insulation layer conducts convection heat transfer with the 
environment. The other surfaces Γ3 is adiabatic, and the specimen Γ2 sur-
face is arranged with a thermocouple, and the temperature can be directly 
measured. To facilitate POD downscaling, the thermal conduction resis-
tance of the insulation layer is considered as the convection heat transfer 
resistance, that is, without the insulation layer, the reduced convection 
heat transfer coefficient between the outer wall of coke chamber and the 
environment is used for heat dissipation.

The x = (ϕ, θ, y) is denoted as the spatial co-ordinate vector, and the 
governing equation of the temperature field in the spatial region 𝑉 is:
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where q(y) is the axial y heat flux distribution of coke chamber wall, h2 – the heat transfer co-
efficient of surface Γ2 part, Tamb – the ambient temperature of the coke chamber, n – the outer 
normal direction of coke chamber surface, and λn – the thermal conductivity of coke chamber 
body material. If the heat flux distribution q(y), thermal physical property parameters and other 
thermal boundary conditions are known, the temperature field T(x) of coke chamber can be 
determined by the heat transfer model.

 – Heat transfer simulation: Finite element method has the characteristics of clear phys-
ical concept and wide application range. This topic uses its mature theory in the field 
of heat transfer to lay a foundation for subsequent research. The mesh physical field 
model adopts finite element software to control the mesh sequentially, and adaptively 
refined to generate a free quadrilateral mesh. To verify the accuracy of finite element, 
we consider a typical inverse problem case. The heat transfer model, thermophysical 
parameter settings and boundary conditions are the same as those in [24]. As shown in 

Figure 2. Schematic 
diagram of  
coke chamber
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fig. 3, it can be seen clearly that the results 
predicted by the FEM are in good agree-
ment with the exact solution of [24], which 
indicates the present FEM model could 
accurately predict the radial heat transfer 
problem.

In general, the influence of mesh on the re-
sults should be considered in simulation, and the 
accuracy of the results is related to the quality of 
mesh division. Verifying the irrelevance of the 
grid is an indispensable part.

Table 2. Kinds of grid division observation 
point temperature calculation data TFEM

TFEM/K 1 2 3 4 5
Coarsening 501.91 502.37 495.46 484.17 487.38
Normalization 489.69 489.71 490.82 481.24 481.34
Refine 487.19 487.05 487.28 478.18 477.33
More detailed 487.19 487.05 487.29 478.18 477.33

Compared with the data in tab. 2, the grid division of the model is changed from 
coarser to more refined. With the gradual refinement of the grid division, the output temperature 
data changes less and less, and the temperature data basically do not change until the refinement 
reaches more refined. The calculation time gradually increases from 5-54 seconds, especially 
in the process of grid refinement to finer, the calculation time increases from 19-54 seconds. It 
can be concluded that during the gradual refinement of grid division, there is a certain devia-
tion between the temperature obtained by coarser grid division and that by finer grid division. 
However, after the grid division reaches the refinement level, the temperature obtained by sim-
ulation calculation basically does not change. In this paper, the focal chamber model is selected 
for refinement and meshing based on the principle of optimizing calculation accuracy and cal-
culation time. In this case, the coke chamber contains 50104 domain elements, 33280 boundary 
elements and 1214 boundary elements after refinement and dispersion.

The POD-BP reduced order model

The POD method takes experimental data or numerical results as samples and ex-
presses the general physics problem as a set of POD base functions and corresponding coef-
ficients in a low-order form of linear superposition. The provided basis functions satisfy the 
energy optimal condition in the sense of least squares. The linear combination of the basic 
functions and corresponding coefficients can realize the low dimensional description of the 
high dimensional data.

Most POD dimensionality reduction algorithms combine Galerkin projection method 
to establish order reduction model. The purpose of POD decomposition or SVD decomposition 
for the constructed sample set is to obtain M POD bases with the highest information content, 
and then project the information on POD bases to other high dimensional spaces of the whole 
model through Galerkin projection method, to achieve low dimensional expression of the phys-
ical field of the whole model.

Figure 3. Comparison between present 
computational solution and exact solution [24]
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The POD basis selection

For the selection of POD basis functions, 
in principle, the more basis functions, the more 
information obtained, and the more accurate the 
solution. However, in practice, algebraic equations 
may be ill-posed due to excessive POD basis infor-
mation. Experiments show that after the POD basis 
functions are arranged by size, the first six basis 
functions can reflect more than 99.99% of the in-
formation, accurately describe the overall distribu-
tion and details of the temperature field, and the 
smaller basis functions will be omitted. The details 
of the first eight basis functions are shown in fig. 4.

The POD base coefficient calculation and  
analysis based on POD-BPNN

Due to the inconvenient use of the Galerkin method for dealing with complex phys-
ical models of coke chamber, it includes the treatment of boundary conditions, heat transfer 
coefficient and temperature field dimension reduction, etc. The ANN can achieve function ap-
proximation, prediction, classification and other functions. We use neural network to solve the 
coefficient of POD basis function.

By comparing BP network and other neural networks, BP network has simple struc-
ture and fast operation speed. The BP network is introduced to optimize POD method. The main 
research object is POD basis coefficient. Through BP network, the complex adaptive non-lin-
ear relationship between input and output is established according to the transfer function of 
neuron. In this chapter, using the advantage of BP neural network interpolation, the implicit 
basis coefficient of POD method is accurately calculated, which makes the temperature field 
calculation of coke chamber have a relatively ideal temperature field in the complex region, 
and improves the ability of fast reconstruction a certain extent. The specific details are detailed 
in [25, 26].

In order to extract information that can ensure sufficient accuracy, we choose to ex-
tract a set of data within 1 minute at the observation point of the coke chamber. Through inver-
sion and finite element analysis, 4000 sets of finite element data of two cycles are taken as the 
sample set. Through the known temperature of the measurement point and the temperature field 
obtained by the FEM, the BP network is trained on the basis function coefficient of POD. The 
calculated results were compared with those of the FEM, tab. 3:

Table 3. Finite element results and calculation results and errors of POD-BP

POD base coefficient and its error

Coefficient 1 2 3 4 5 6

ξFEM 1.3437 ⋅ 1007 2.7905 ⋅ 1006 7.5802 ⋅ 1005 –3.6600 ⋅ 1005 –1.4805 1004 1.2781

ξPOD-BP 1.3436 ⋅ 1007 2.7903 ⋅ 1006 7.5786 ⋅ 1005 –3.6588 ⋅ 1005 –1.4818 1004 1.2836

Error 3.6204 ⋅ 10–05 6.7150 ⋅ 10–05 2.1175 ⋅ 10–04 –3.3305 ⋅ 10–04 –9.0180 ⋅ 10–04 0.43 ⋅ 10–02

Figure 4. Diagram of information 
proportion of eigenvalue of basis function 
from No. 1 to No. 8
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Through the relative error formula: 
POD-BP FEM

FEM

error
ξ − ξ

ξ
= (5)

where ξPOD-BP is the POD-BP coefficient of temperature field of coke chamber, and ξFEM – the 
coefficient of temperature field of coke chamber obtained by traditional finite element simula-
tion method. The errors of POD basis coefficients of temperature field after POD-BP dimension 
reduction calculation are all below 0.5%. Selecting six POD basis functions can ensure the 
accuracy of POD solution under the condition of minimal computational load. 

Temperature field reconstruction system of coke chamber

The operating process of the temperature field reconstruction system of coke chamber 
designed in this paper is shown in fig. 5:

Figure 5. Operation flow chart

 – Tikhonov regularization principle: Consider the discomfort operator equation:
=Ax b (6)

where A is the mx order matrix (m ≥ n), b – the right end of the m-dimensional equation, and 
x – the n-dimensional unknown vector. The actual situation is that the right end item b of eq. 
(6) has a certain error δ more or less, that is, the error limit between the right end item b and its 
true value bture is ||bture – b || < δ, where δ > 0.

Tikhonov regularization method provides an effective way to solve ill-conditioned 
problems. Its core idea is to impose a weak smoothness constraint on a set of acceptable solu-
tions. Tikhonov regularization of eq. (6) is transformed into solving the minimum value prob-
lem:

min 2 2+λ= −Ax b x (7)
where ||⋅|| is the norm of the vector and λ > 0 is the regular parameter. The solution x of the 
previous formula satisfies the normal equation:

( )λT TA A+ I x = A b (8)
The matrix A used in this paper refers to the temperature field basis function, which is 

obtained by numerical experiment and POD method.
 – Selection criterion of Tikhonov regularization parameters: The Tikhonov regularization 

method is adopted to solve the ill-posed problem, and the selection of appropriate regular-
ization parameters is the key link, which determines the degree of approximation between 
the solution of the regularization constructed approximation problem and the real result, as 
well as the ability to extract the real solution by resisting the influence of measurement error 
and rounding error. Tikhonov regularization parameter selection is too small, the ability to 
reduce the discomfort problem is reduced, the selection is too large, the numerical solution 
and the actual solution is too big difference. The selection of regularization parameters di-
rectly affects the solution of the equation. After applicability analysis, L-curve criterion [27] 
is used for selection in this project.
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Results and discussion

Accuracy analysis of calculation results 

The forward problem in the Tikhonov inverse system of coke chamber, namely the fi-
nite element model, was replaced with the established POD-BP model, and the result deviation 
of the inversion system was adjusted by positive feedback through the POD-BP model. Accord-
ing to the actual measuring points provided by the enterprise, ten heat flux values distributed 
along the height Y-direction are applied to the inner wall of the coke chamber by interpolation 
method, corresponding to the ten temperature measuring points set on the outer wall of the coke 
chamber. 

The measured temperature is stored in POD-BP-Tikhonov inversion system and 
FEM-Tikhonov inversion system, respectively. The initial guess value qg = β[1000, 1000,…, 
1000, 1000] W/m2, β = 1. Five verification points were selected to compare the calculation re-
sults of POD-BP-Tikhonov inversion system and FEM-Tikhonov inversion system, RMSE and 
relative average error η of POD-BP and FEM, and the results were shown in tab. 4.

Table 4. Calculation results and errors of temperature verification points

Calculated value of temperature verification point [K] error

Point of observation M1 M2 M3 M4 M5 RMSE [K] η [%]

TFEM 530.09 536.53 524.94 522.91 519.47 –

TPOD-BP 530.85 537.26 525.99 524.43 521.72 1.38 0.26

As can be seen from the calculation results, there is little difference between the 
FEM-Tikhonov inversion system and POD-BP-Tikhonov inversion system, with an error dif-
ference of 0.26%. As the FEM model is closer to the real heat transfer situation, there is a cer-
tain error between the POD-BP reduced order model and the FEM model in calculation, but the 
whole calculation process takes 34.83 seconds for the FEM-Tikhonov inversion system, while 
the POD-BP-Tikhonov inversion system only takes 0.64 seconds. This is because each iteration 
calculation needs to call forward problem and calculate across software, while POD-BP step-
down model with faster calculation speed saves the transmission time between software by us-
ing forward problem calculation constructed by software, which greatly reduces the calculation 
time and cost of Tikhonov system. 

Numerical experiments on factors influencing the calculation results

When POD-BP reduced order model is used as the forward problem of Tikhonov in-
version system, the calculation results and calculation speed are ideal. In this section, numerical 
experiments are conducted to analyze the influence of initial guess value, measurement error 
and number of temperature measurement points on inversion results of Tikhonov inversion 
system based on POD-BP reduced order model. It is assumed that the distribution of heat flux 
in the inner wall of coke chamber is actually:

10000 5000
5000( ) 11 1000 5000 28520

2614
28520

21000

y
yq y y

y

<
 − = + × ≤ ≤ 
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(9)
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where y [mm] is the axial co-ordinate of the coke chamber and q(y) [Wm–2] – the relative po-
sition heat flux.

In fact, due to the inevitable measurement error, the calculation result of measured 
temperature Tk

mea can be obtained through eq. (10) in the numerical experiment:
mea exa= + ( = 1,2, , )k kT T k Kωσ  (10)

where Tk
exa is the heat flux in the inner wall of a given coke chamber, the exact value of the 

temperature at the measured point is obtained by solving the forward problem, ω – the random 
number within [–2.576, 2.576] that follows the standard normal distribution, and σ – the stan-
dard deviation of measurement error.

When the temperature measurement error (σ = 0 K) is not considered, the target pa-
rameter ε = 0.01 is taken. When σ ≠ 0 K, set according to deviation principle ω = Kσ2.
 – The effect of the initial guess value: The temperature measurement error σ = 0.01 K, the 

number of temperature measurement points K = 12. During the inversion, the initial guess 
value. Then qg = β[1000,1 000,…,1000, 1000] W/m2. When β values are different, the re-
sults of heat flux inversion are shown in tab. 5.

Table 5. Error of inversion results with different initial guesses

β Root mean square error [K] Relative mean error, η [%]

0.1 5.69 0.22

0.5 5.56 0.19

1.0 5.59 0.19

2.0 5.47 0.20

As can be seen from tab. 6, the inversion results of heat flux distribution obtained 
by Tikhonov method are in good agreement with the real value in numerical experiments, and 
there is little difference between the inversion results of different initial guesses, which proves 
that the initial guesses have little influence on the calculation results of Tikhonov inversion 
system constructed in this paper.

 – The impact of measurement error: Take the initial guess value qg= [1000, 1000,…,1000, 
1000] Wm2, and the number of temperatures measuring points K = 12. The influence of 
measurement error on inversion results is studied by changing the standard deviation σ of 
temperature measurement error during inversion. The inversion results are shown in tab. 6.

Table 6. Inversion errors of different temperature measurement errors

σ Root mean square error [K] Relative mean error, η [%]

0.01 5.29 0.19

0.5 6.19 0.26

1.0 7.49 0.38

1.5 8.67 0.51

It can be seen from tab. 6 that when the standard deviation σ of the measurement error 
gradually increases from 0.01-1.5, the relative mean error of the inversion results gradually 
increases from 0.19-0.51%, and the RMSE increases from 5.29-8.67 K, indicating that the 
measurement error has a certain influence on the inversion results of the Tikhonov inversion 
system. But the effect was not significant. The inversion system can still effectively calculate 
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the heat flux distribution of the coke chamber wall, which indicates that the Tikhonov inversion 
system constructed in this paper has a good anti-interference ability to the measurement error.
 – The influence of the number of measuring points: The measured heat flux qexa, the initial 

guess value qg = [1000, 1000,…,1 000, 1000] W/m2, and the standard deviation of measure-
ment error σ = 0.01 K are taken to discuss the influence of temperature measurement points 
K = 10, K = 20, and K = 30 on the inversion results. The inversion results are shown in tab. 7.

Table 7. Inversion errors of different temperature measurement points
K Root mean square error [K] Relative mean error, η [%]
10 5.50 0.23
20 4.38 0.18
30 3.46 0.16

It can be seen from tab. 7 that with the increase of the number of temperature mea-
surement points, the mean relative error and RMSE of the inversion result and the real value 
decrease, indicating that the input information is complete, and the accuracy of the constructed 
Tikhonov inversion system is higher. However, overall, the wall heat fluidity of the coke cham-
ber whose inversion result is consistent with the real heat flux value is at a higher level. The 
results show that the inversion results of the Tikhonov system constructed in this paper are less 
affected by the number of temperatures measuring points, which proves that the system has 
good anti-discomfort.

Conclusions

In this paper, Tikhonov inversion system is faced with huge computational cost and 
cannot be applied in engineering practice due to the high mathematical expression freedom 
of the traditional FEM in the heat transfer model of coke chamber and the huge number of 
solving variables (the order of magnitude is usually 107 to 108). In view of the aforementioned 
problems, this paper mainly does the following work: the Tikhonov system for the spatial 
distribution of heat flux in coke chamber was constructed to realize effective inversion of 
the spatial distribution of heat flux in the inner wall of coke chamber. Aiming at the complex 
physical model of coke chamber, the POD-BP reduced order model was constructed, which 
greatly reduced the calculation number of positive problems in Tikhonov system. Numerical 
experiments verify the accuracy of the POD reduced order model, the calculation error is less 
than 0.41%, but the calculation time is reduced from 2.17 minutes to 2.4 seconds, which is 
about 1.84% of the finite element model. The calculation time has been drastically reduced. 
Prospects:

 y The follow-up study, the influence of the deformation of the coke chamber itself on the tempera-
ture field should be considered and the heat transfer model of the coke chamber should be highly 
simulated to achieve the accurate expression of the temperature field of the coke chamber.

 y During the calculation time of Tikhonov inversion system, the temperature field in the coke 
chamber does not change much. In the same process, the temperature field in the calculation 
time is approximately analyzed to achieve the purpose of real-time reconstruction of the 
coke chamber temperature field. But this will inevitably make the result of temperature field 
reconstruction rougher. If the computer performance is good enough, the calculation time 
can be shortened again, and the real-time reconstruction result of temperature field can be 
more realistic.
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