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This study aims to perform a numerical simulation of the boundary flow with the 
characteristic Sakiadis flow of the MHD Jeffrey fluid under the Cattaneo-Christov 
heat flux model over the horizontal plate. The similarity transformation for the lo-
cal similarity solution was used to reduce the set of governing equations to non-lin-
ear ODE. The equations were solved by using ‘dsolve’ command with the numeric 
option for the boundary value problem in MAPLE. Simulations have been carried 
out for different values of the relaxation retardation times, the Deborah number, 
the magnetic field parameter, the heat flux relaxation time, the Prandtl number, 
and the Schmidt parameter. A comparative study of the numerical results from the 
previously published paper with the present result for the dimensionless velocity 
gradient over the horizontal plate shows excellent agreement. It has been found 
that the growth of the Deborah number leads to the dimensionless velocity gradient 
enhancement, while the increment of the relaxation retardation times parameter 
and the magnetic field parameter indicates the opposite trend. The heat transfer 
rate noticeably decreased with an increment in the Prandtl number and thermal 
relaxation time at the fluid regime. Also, fluid concentration decreases with larger 
values of the Schmidt parameter.
Key words: Cattaneo-Christov heat flux model, Jeffrey fluid,  

Sakiadis flow, MHD

Introduction

Ensuring an optimal cooling rate during the manufacturing process is crucial for main-
taining the desired quality of the final product. To achieve this, a controlled cooling system is 
necessary. An electrically polymeric liquid seems to be a good candidate for such applications 
of polymer and metallurgy because here, the flow can be controlled by an applied magnetic 
field [1]. The MHD flows play a significant role in various fields, including MHD power gen-
eration systems, nuclear reactor cooling, plasma studies, and geothermal energy extraction. The 
MHD effect arises when a magnetic field influences fluid-flow. Hartmann and Lazarus [2] were 
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the first people to arise come up with the idea of a combination between electromagnetic and 
hydrodynamic. Alfven [3] expanded the work done by Hartmann and Lazarus [2] by consider-
ing the conducting fluid under a constant magnetic field and proving that every fluid movement 
produces electric currents. He suggested that the existence of these waves may be important 
in the field of solar physics. Sarpkaya [4] expanded the work done by Alfven [3] and found 
that the fluid velocity distribution is more uniform when the fluid is placed in a magnetic field 
between two parallel planes. Sarpkaya [4] also investigated two fluid models: the power-law 
and Bingham plastic models. The word MHD is a combination of three words: magneto means 
magnetic field, hydro means water, and dynamic means movement or flow. The terms MHD 
and hydromagnetic are interchangeable and have the same meaning. Heat transfer analysis for 
MHD viscous fluid past a non-linear shrinking sheet was done by Javed et al. [5]. They found 
that for increasing magnetic field parameters, the fluid velocity for the first solution increases 
but decreases for the second solution by employing the Keller-Box method. Alamri et al. [6] 
studied the MHD second-grade fluid and Cattaneo-Christov heat flux models over a stretch-
ing cylinder. It is shown that the fluid velocity decreases when increasing the magnetic field 
parameter from 0 to 1. Recently, Asmadi et al. [7] found that increasing the Hartman number 
decreases the velocity profile.

The Jeffrey fluid model, as a subfamily of non-Newtonian fluids, has garnered sig-
nificant attention in addressing the present problem. This fluid model represents a viscoelas-
tic non-Newtonian fluid with both relaxation and retardation effects, making it an interesting 
subject of study. Researchers have extensively explored the impact of magnetic fields on this 
specific fluid-flow type. In recent studies, several researchers have focused on investigating 
various aspects of MHD flows and their associated heat transfer characteristics. For instance, 
Zokri et al. [8] conducted a study on the MHD Jeffrey fluid influence of radiation and viscous 
dissipation over a stretching sheet with convective boundary conditions. The findings of their 
study revealed that the magnetic parameter had a notable effect on the skin friction coefficient 
and the local Nusselt number. Specifically, the results demonstrated that an increase in the mag-
netic parameter led to a decrease in both the skin friction coefficient and the local Nusselt num-
ber. Mohd et al. [9] conducted a study on MHD mixed convection, specifically investigating the 
combination of a Jeffrey fluid (non-Newtonian fluid) with the Buongiorno model (nanofluid) 
over an inclined stretching sheet. They employed the Runge-Kutta-Fehlberg (RKF45) numeri-
cal method to generate accurate numerical results. Their research sheds light on the intricacies 
of heat and fluid-flow in such systems. In a related study, Hayat et al. [10] focused on the MHD 
Jeffrey nanofluid-flow with heat transfer over a stretching surface. The findings of this study 
indicated that an increase in the magnetic parameter resulted in a decrease in fluid velocity. 
These investigations contribute to our understanding of the complex behaviour of MHD flows 
and provide valuable insights into the influence of magnetic fields on the flow characteristics of 
Jeffrey fluids Additionally, Ullah et al. [11] delved into the thermal diffusion aspects of a 2-D 
and unsteady Jeffrey nanofluid, considering time-dependent thermal conductivity. They utilised 
the homotopy analysis method to compute dimensionless equations, revealing the enhanced 
utilisation of variable thermal conductivity due to the heat transportation of nanoparticles. 

Numerical approaches play a crucial role in solving MHD equations by discretizing them 
and employing computational methods. Various numerical methods have been utilised for MHD 
problems, including finite volume methods [12], finite element methods [13, 14], and finite dif-
ference methods [15]. These methods enable the simulation and visualisation of fluid dynamics, 
magnetic field development, and energy transfer in MHD systems. They are particularly effective 
in addressing complex non-linear problems that lack analytical solutions. In addition the men-
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tioned studies, there have been several recent investigations exploring different aspects of fluid 
dynamics and mathematical techniques. For instance, Hussain et al. [16] applied the shooting 
approach to analyse the peristaltic flow of a Jeffrey fluid in a curved channel. Utilizing the wave-
length approximation, they obtained solutions for velocity and pressure distributions, examining 
the impact of various parameters such as curvature and Jeffrey fluid properties on flow charac-
teristics. This study offered valuable insights into the peristaltic behaviour of Jeffrey fluids in 
curved channels. Another study by Ullah et al. [17] focused on the unsteady 2-D squeezing flow 
of MHD Jeffrey fluid between parallel plates. The researchers considered the influence of the 
Cattaneo-Christov heat flux model and employed the Levnberg-Marquardt method and ANN to 
solve the resulting system of equations. Through their analysis, they observed that an increase in 
the applied magnetic field strength led to a reduction in the velocity profile. Next, Ibrahim and 
Abou-Zeid [18] investigated the fluid temperature and concentration in MHD peristaltic transport 
of Jeffrey fluid using a computational simulation method called the adaptive shooting method. 
This technique, which utilises the direct adaptive shooting technique, allows for the accurate ap-
proximation of solutions to boundary value problems (BVP) involving highly non-linear systems 
of differential equations. The AST approach has proven to be effective in handling complex math-
ematical problems where analytical solutions are challenging to obtain. Moreover, MATLAB 
offers a user-friendly and accessible function called bvp4c, which is proficient in tackling com-
plex problem-solving tasks. The bvp4c function is a computational tool that utilizes an iterative 
method for solving non-linear systems of equations. Its implementation is based on the Lobatto 
IIIa formula, a three-stage numerical integration technique widely recognized for its accuracy and 
efficiency. Naganthran et al. [19] examined the transport phenomena of the Jeffery fluid near the 
stagnation region over a radially stretching or shrinking disc. Through the utilization of the pow-
erful and intuitive bvp4c function in MATLAB, dual solutions have been identified. In the present 
work, the MAPLE 21 application has been chosen to find the numerical results because of its 
simplicity and effectiveness in obtaining accurate numerical results. It offers an easy-to-use com-
mand in MAPLE 21 to find the desired results directly. Another study by Murali and Babu [20] 
investigated the numerical study of convective MHD Jeffrey fluid-flow between vertical plates 
with variable suction. The findings indicated that an increase in the magnetic field parameter led 
to the suppression of the fluid’s primary velocity profiles. Furthermore, Omohkuale and Dange 
[15] explored the impact of heat absorption on unsteady MHD convective Jeffrey fluid-flow over 
an infinite vertical plate. The study revealed that the momentum boundary-layer increased with 
higher values of heat absorption and Jeffery parameters, while the fluid velocity decreased with 
higher values of suction and chemical reaction parameters.

The idea of examining heat transfer characteristics has revolved around the well-
known Fourier Law of heat conduction for quite some time, proposed by Fourier [21]. This 
simplistic law may be used for a simple system but is unsuitable for a more complex set-up. The 
downside of this law is that a slight disturbance affects the fluid instantly due to the parabolic 
type of energy equation that the law produces. Subsequently, Maxwell, and Cattaneo made ad-
vancements to the model by introducing a relaxation time for heat flux. Furthermore, Christov 
[22] made additional refinements to the Maxwell-Cattaneo law by replacing the time derivative 
model with the Oldroyd upper convected derivative. This modification resulted in the devel-
opment of material-invariant properties referred to as the Cattaneo-Christov heat flux. Catta-
neo-Christov, a heat flux model, was previously used in many studies to investigate the coupled 
flow in a viscoelastic fluid [23], the Jeffrey fluid with homogeneous-heterogeneous reactions 
[24], the flow of Maxwell fluid in the presence of suction [25], and the third-order slip flow 
of viscoelastic nanofluid [26]. In the study conducted by Islam et al. [27], the MHD Maxwell 
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fluid-flow was measured using the Cattaneo-Christov heat flux model. They found that a higher 
unsteadiness parameter resulted in a reduction in the velocity profile while increasing the ther-
mal and concentration profiles. The study also demonstrated that an increase in the magnetic 
parameters decreased the velocity profile of Maxwell fluid-flows. Tassaddiq [28] investigated 
the impact of hybrid nanoparticles on the thermal efficiency of nanostructured nanoparticles 
(micropolar fluid) using the Cattaneo-Christov heat flux model. This study sheds light on the 
influence of nanoparticle characteristics on the thermal behaviour of MHD fluids, expanding 
our understanding of heat transfer phenomena in such systems. Furthermore, in the study by 
Makinde et al. [29], it was observed that the thermal boundary-layer has a significant influence 
on the flow over a wedge compared to other geometries, such as a plate or a cone. Furthermore, 
Ramandevi et al. [30] indicates that the thermal relaxation time exhibits dual behaviour on the 
temperature of Casson fluid, and an increase in the temperature ratio or frictional heat leads to 
an increase in the thickness of the thermal boundary-layer. Thermal relaxation time is a char-
acteristic of the fluid that determines how it responds to thermal changes, as it tends to restore 
thermal equilibrium and decrease the temperature of the fluid. 

Despite the considerable advancements made by the Cattaneo-Christov theory, the cur-
rent state of the literature indicates a lack of investigations regarding the influence of the Catta-
neo-Christov heat flux model on MHD heat and mass transfer of Jeffrey fluid under Sakiadis flow 
conditions. Therefore, the objective of this article is to address this research gap. To achieve this, 
we employ a similarity transformation approach based on previously published work [31], and 
the resulting system of ODE is numerically solved using the BVP command in MAPLE Software. 
The outcomes of this study hold considerable importance for scientists and engineers, as they 
provide valuable insights into the analysis of convective heat and the integration of the Catta-
neo-Christov heat flux model for mass transfer in the Sakiadis MHD boundary-layer flow of Jef-
frey fluid. These findings enhance our understanding of the fundamental principles governing the 
phenomenon and enable accurate predictions of the convective flow properties of Jeffrey fluid in 
various advanced technical systems as well as industrial and engineering applications. Examples 
of such applications include hydrodynamics, metal extrusion, metal spinning, and manufacturing 
processes involving glass fibres. 

Mathematical formulation

Flow analysis

A steady 2-D incompressible laminar flow of non-Newtonian fluid over a horizontal 
sheet and the chemical reaction, thermal radiation, and heat source effects subject to Sakiadis 
boundary-layer flow are considered. The constitutive equation for Jeffrey fluid is defined:

pI Sτ = − + (1)

with τ is the Cauchy stress tensor, I – the identity tensor, p – the pressure, and S – the define as 
the extra stress tensor and it is written:

1
1 2 1

11
RS R R
t

µ λ
λ

 ∂ = + + ∇  + ∂  
V (2)

where µ is the dynamic viscosity, λ1 – the relaxation retardation time ratio, λ2 – the retardation 
time, V = (u, v) – the Maxwell fluid’s velocity vector, u and v are velocity components along the 
x- and y-directions, respectively, and R1 – the Rivlin-Ericksen tensor defined:

( ) ( )1R ′= ∇ + ∇V V (3)
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This model comprises the features of viscous fluid and second-grade fluid, which 
are: first, if λ1 = λ2 = 0 then the problem can be characterised as the viscous fluid model, next, 
if λ1 ≠ 0 and λ2 = 0, then the problem can be represented as the second-grade fluid, and lastly, if  
λ1 ≠ λ2 ≠ 0 , then the problem is known as the Jeffrey fluid model [32]. With several calculations 
and simplifications, the momentum equation of Jeffrey fluid in 2-D flow can be written:

0u v
x y
∂ ∂

+ =
∂ ∂

(4)

22 3 3 2 2
0

22 2 3 2
11   

Bu u u u u u u u uu v u v u
x y x y x yy x y y y

ν σ
λ

λ ρ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ =  + + − +  −  ∂ ∂ + ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂   

(5)

where n = µ/ρ is the kinematic viscosity of the fluid, and ρ – the fluid density, B0 – the uniform 
magnetic field, and σ – the electrical conductivity subject to the boundary conditions of Sa-
kiadis flow:

, 0 at 0 and 0 asu U v y u y∞= = = → →∞ (6)
To simplify the flow model as presented previously, we introduce the similarity trans-

formation:

( ) , UU x f y
x

ψ η ην
ν
∞

∞= = (7)

where f is the dimensionless stream function and ψ – the stream function defined as u = ∂ψ/∂y
 and v = –(∂ψ/∂x). Then, let U∞ = cx where U∞ is the linear velocity is, and c – the positive con-

stant. Hence, eq. (7) is simplified to:

( ), cx c f yψ ν η η
ν

= = (8)

The single-stream function can be replaced by the velocity components u and v. It is 
chosen so that the continuity equation in eq. (4) is satisfied automatically:

, ( )fu cx v c fν η
η
∂

= = −
∂

(9)

Invoking eqs. (8) and (9) into eq. (5), the ordinary differential equation is obtained:

( )( ) ( )2 2
11 M 0f ff f f f ffλ β′′′ ′ ′′ ′′′′+ + − −′−′′ + = (10)

where β = cλ2 is the Deborah number, which is also defined as a dimensionless number, often 
used in rheology to characterise the fluidity of materials under specific flow conditions, and 
lastly, M = σB2

0 /cρ is the magnetic field parameter, or the Hartmann number. The boundary 
conditions for eq. (6) are given:

0,  1 at 0 and 0 atf f fη η′= = =′ = → ∞ (11)

Heat transfer

The Maxwell-Cattaneo law introduced the relaxation time of the heat flux, λ3 so that 
the effect of the governing equation could be changed to a form of the wave equation. The 
thermal flux vector becomes:

31 k
t

λ ∂ + = − ∇ ∂ 
q T (12)
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where q is the heat flux and T – the temperature of the Maxwell fluid. To generalise Fourier 
law based on eq. (12), Christov [22] used Oldroyd’s upper convected derivative to replace the 
partial time derivative. Hence, the material-invariant form for the internal energy is obtained:

p
Tc
t

ρ ∂ + ∇ = −∇ ∂ 
V qT (13)

where cp is the constant specific heat. Next, the frame-indifferent generalisation of Fourier’s 
law with the addition of relaxation of the heat flux is defined:

( )3
q k
t

λ ∂ + + ∇ − ∇ + ∇ = − ∇ ∂ 
q V q q V V q T (14)

where k is the thermal conductivity. When λ3 = 0, eq. (14) will be simplified to Fourier’s law of 
heat conduction. Since the fluid in the present problem is incompressible, therefore, ∇V = 0. 
Tibullo and Zampoli [33], eq. (14) can then be written:

3
q k
t

λ ∂ + + ∇ − ∇ = − ∇ ∂ 
q V q q V T (15)

On the other hand, using the energy equation for the steady boundary-layer flow by 
Han et al. [23] and Khan et al. [34], we have:

pcρ ⋅∇ = −∇V T q (16)
Finally, utilising eq. (15) in eq. (16), the temperature-governing equation is formulat-

ed:
2 2 2

2 2
3 2 2

2

2

2
 

T T T T T u u T v v Tu v u v uv u v u v
x y x y x y x x y yx y

T
y

λ

α

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂      

∂
=

∂

(17)

where α is the thermal diffusivity, and subject to the boundary conditions given:
at 0 and aswT T y T T y∞= = → →∞ (18)

where Tw is the temperature of the stretching sheet and T∞ – the ambient temperature. Next, to 
derive eq. (17), we introduce the similarity transformation, the dimensionless temperature, θ of 
the form:

( ) and ( )( )w
w

T T T T T T
T T

θ η θ η∞
∞ ∞

∞

−
= = − +

−
(19)

Using the similarity transformation of eqs. (8)-(10) and eq. (14), eq. (12) is reduced:

( )21 0
Pr

f f ffθ θ γ θ θ′ ′+ +′ ′−′ ′ =′ (20)

where the Prandtl number is given as Pr = n/α wherein the kinematic viscosity, n, divided 
by thermal diffusivity, α. The definition of kinematic viscosity is a diffusivity for velocity or 
momentum, while the definition of thermal diffusivity is a diffusivity for temperature or heat. 
The non-dimensional thermal relaxation time is given as γ = cλ3. The boundary conditions for  
eq. (20):

1 at 0 and 0 atθ η θ η= = = →∞ (21)
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Mass transfer

Mass transfer arises from variations in the concentration of specific chemicals within 
a mixture. By using the principle of conservation of mass, the mass transfer that passes through 
the control element is the rate of mass-flow out of the control volume (outflow) subtracted from 
the rate of mass-flow into the control volume (inflow) plus the increase in mass, which is equal 
to zero. Through subsequent substitution and calculations, the concentration equation for the 
boundary-layer problem becomes:

2

2
C C Cu v D
x y y

∂ ∂ ∂
+ =

∂ ∂ ∂
(22)

subject to the boundary conditions:
at 0 and aswC C y C C y= = → ∞ →∞ (23)

where Cw is the concentration of the stretching sheet and C∞ is the ambient concentration. Next, 
by using similarity transformations and dimensionless concentration, ϕ of the form:

( ) and ( )( )w
w

C C C C C C
C C

φ η φ η∞
∞ ∞

∞

−
= = − +

−
(24)

Equation (22) is reduced to:
Sc 0fφ φ+′ ′ =′ (25)

where Sc = n/D is the Schmidt parameter. The boundary conditions for eq. (25):
1 at 0 and 0 atφ η φ η= = = →∞ (26)

The local skin friction coefficient, local Nusselt number,  
and local Sherwood number

The physical quantities of interest are the skin-friction coefficient, Cf, the local Nus-
selt number, Nux, and the local Sherwood number, Shx, which are defined:

( ) ( )2
  

, Nu , Shw w m
f x x

w w

xq xq
C

k T T D C CU
τ
ρ ∞ ∞∞

= = =
− − (27)

where τw, qw, and qm are the shear stress along the stretching surface, the surface heat flux, and 
the surface mass flux, respectively, which are given:

0 0 0

,  ,  w w m
y y y

u T Cq k q D
y y y

τ µ
= = =

     ∂ ∂ ∂
= = − = −     ∂ ∂ ∂     

(28)

with µ being the dynamic viscosity and k being the thermal conductivity. Dimensionless forms 
of skin friction coefficient, local Nusselt number, and local Sherwood number:

( ) ( ) ( ) ( ) ( ) ( )1/2 1/2 1/2Re 0  ,  Nu Re 0  ,  Sh Re 0f x x x x xC f θ φ− −′′ ′ ′= = − = − (29)

where Rex = U∞x/n is the local Reynolds number.

Results and discussion 

The transformed governing eqs. (10), (20), and (25) along with the corresponding 
boundary eqs. (11), (21), and (26) are numerically solved using the dsolve/numeric/BVP com-
mand in MAPLE software [35]. To validate the accuracy of the proposed method, a compar-
ison is made between the obtained results and those reported in previous studies, showing 
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favourable agreement. The skin friction coefficient is presented in tab. 1, including values from 
Andersson et al. [36], Chen [37], Babu and Narayana [38], and the current study for various 
magnetic parameters. It is observed that the skin friction coefficient decreases as the magnetic 
parameter increases. Based on tabs. 1-5, the relative percentage of errors is very close to 0%, 
and this indicates excellent agreement with the previous study.

Table 1. Comparison of the local skin friction coefficient 
for the various values of M with [36]

M  [36] Present work Relative error [%]
0.00 1.0000 1.00000 0.00000
0.50 1.2250 1.22474 0.02122
1.00 1.4140 1.41421 0.01485
1.50 1.5810 1.58114 0.00886
2.00 1.7320 1.73205 0.00289

Table 2. Comparison of the local skin friction coefficient 
for the various values of M with [37]

M [37] Present work Relative error [%]
0.00 1.00000 1.00000 0.00000
0.50 1.22425 1.22474 0.04002
1.00 1.41421 1.41421 0.00000
1.50 1.58114 1.58114 0.00000
2.00 1.73205 1.73205 0.00000

The numerical computations are restricted entirely by the practical range of 
non-dimensional parameters, such as (0.4 ≤ λ1 ≤ 1.5), (0.2 ≤ β ≤ 0.6), (0.2 ≤ γ ≤ 0.6), and  
(0.1 ≤ Sc ≤ 1.5) [32] throughout all the results in this study. Meanwhile, the physical proper-
ties of the fluid are used to simulate the system in a real-life situation, in which parameters 
Prandtl numbers lie within (1.5 ≤ Pr ≤ 2.0) as shown in tab. 6. Table 7 demonstrates the effect 
of changing some of the non-dimensional parameters in the model on the skin-friction factor 
coefficient, f ″(0), the local Nusselt number, θ′(0), and the local Sherwood number, ϕ′(0). The 
results show that f ″(0) increases while –θ′(0) and –ϕ′(0) decrease when both parameters λ1 and 
M are increased. However, the results show the opposite trend when β is increased. The values 
of –ϕ′(0) are unchanged for different values of Prandtl number and γ since these two parameters 
are absent from the concentration equation, thus, varying these parameters does not affect the 
fluid’s concentration profile. The values of f ″(0) and–θ′(0) remain fixed for different values 
of Shmidt number because the parameter only exists in the concentration equation, it does not 
affect the values of skin friction or the Nusselt number.

Table 3. Comparison of the local skin friction coefficient 
for the various values of M with[38]

M [38] Present work Relative error [%]
0.00 1.00000 1.00000 0.00000
0.50 1.22479 1.22474 0.00408
1.00 1.41432 1.41421 0.00778
1.50 1.58115 1.58114 0.00063
2.00 1.73225 1.73205 0.01155
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Table 4. Comparison values of f ″(0) when  
M = Sc = γ = 0 and λ1 = 0.2

β [39] (Exact) Present work Relative 
error [%]

0 −1.09544512 −1.09544576 0.00006
0.2 −1.00000000 −1.00000129 0.00013
0.4 −0.92582010 −0.92582232 0.00024
0.6 −0.86602540 −0.86602908 0.00042
0.8 −0.81649658 −0.81650173 0.00063
1.0 −0.77459667 −0.77460285 0.00080
1.2 −0.73854895 −0.73855880 0.00133
1.4 −0.70710678 −0.70711653 0.00138
1.6 −0.67936622 −0.67938034 0.00208

Table 6. The physical properties  
of the selected fluid

Fluid Pr T∞ n
Gaseous 
ammonia 1.5-2.0 298.15 0.145

Table 7. The variations of  f ″(0), –θ′(0), and –ϕ′(0) for various 
values of non-dimensional governing parameters

β λ1 M Pr γ Sc  f″(0) –θ′(0) – ϕ′(0)

0.2

0.5 0.5 1.5 0.6 1.5

−1.38902 −0.79241 −0.79869

0.4 −1.29083 −0.80091 −0.80621

0.6 −1.21266 −0.80842 −0.81224

0.3

0.5

0.5 1.5 0.6 1.5

−1.33671 −0.79649 −0.80261

1 −1.53168 −0.77687 −0.78568

1.5 −1.70633 −0.76138 −0.77155

0.3 0.5

0.5

1.5 0.6 1.5

−1.33671 −0.79649 −0.80261

1 −1.52896 −0.77774 −0.78648

1.5 −1.70314 −0.76242 −0.77255

0.3 0.5 0.5

1.5

0.6 1.5

−1.33671 −0.79649 −0.80261

1.7 −1.33671 −0.84698 −0.80261

2 −1.33671 −0.92648 −0.80260

0.3 0.5 0.5 1.5

0.2

1.5

−1.33671 −0.79897 −0.80261

0.4 −1.33671 −0.79673 −0.80261

0.6 −1.33671 −0.79649 −0.80261

0.3 0.5 0.5 1.5 0.6

0.5 −1.33670 −0.79649 −0.59685

1 −1.33671 −0.79649 −0.69839

1.5 −1.33671 −0.79649 −0.80261

Table 5. Comparison values of f ″(0) when  
M = Sc = γ = 0 and β = 0.2

λ1 [39] (Exact) Present work Relative 
error [%]

0.0 −0.91287093 −0.91287373 0.00031
0.4 −1.08012345 −1.08012390 0.00004
0.6 −1.15470054 −1.15470074 0.00002
0.8 −1.22474487 −1.22474497 0.00008 ⋅ 10–3

1.0 −1.29099445 −1.29099450 0.00387 ⋅ 10–3

1.2 −1.35400640 −1.35400661 0.00002
1.4 −1.41421356 −1.41421484 0.00009
1.6 −1.47196014 −1.47196502 0.00033



Othman, Z. S., et al.: Cattaneo-Christov Heat Flux Effect on Sakiadis ... 
4870 THERMAL SCIENCE: Year 2023, Vol. 27, No. 6B, pp. 4861-4875

Figures 1(a)-2(a) depict the effect of magnetic field parameters on the velocity pro-
files, f ′(η), temperature profiles, θ′(η), and concentration profiles, ϕ′(η). The velocity profile 
decays faster with an increase in the magnetic field parameter. From a physical point of view, 
when the magnetic field is applied to this fluid, the velocity of the Jeffrey fluid is distributed by 
the Lorenz force present in the fluid; this causes the fluid to move faster, and in turn, it tends to 
decelerate the fluid-flow. On the contrary, an increased magnetic field strength leads to a higher 
convergence rate of the thermal conductivity and concentration boundary-layers, as depicted in 
figs. 1(a) and 2(a). From this observation, it can be inferred that variations in the magnetic field 
parameters have a negligible impact on the velocity, temperature, and concentration profiles. 
Figure 2(b) expresses the effect of the Deborah number on the velocity profile f ′(η). Increasing 
the Deborah number causes the velocity profile to decay faster towards zero. On the other hand, 
the temperature profile and the concentration profile decrease with increasing parameters of β, as 
shown in figs. 3(a) and 3(b). The Deborah number is defined as the ratio of fluid relaxation time 
to its deformation rate. Hence, when the parameter β increases, the deformation time of the fluid 
decreases, and the relaxation time increases. As a result, it causes the thickness of momentum, 

Figure 1. (a) Impact of M on f ′(η) and (b) impact of M on θ(η),  
when Pr = 1.5 = Sc, γ = 0.6, λ1 = 0.5, and β = 0.3

Figure 2. (a) Impact of M on ϕ(η) and (b) impact of β on f ′(η),  
when Pr = 1.5 = Sc, λ1 = 0.5 = M, and γ = 0.6 
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the thermal boundary-layer, and the concentration boundary-layer to become thicker. It can be 
concluded that the changes in the parameter β affect the velocity, temperature, and concentration 
profiles slightly. Figure 4(a) illustrates the impact of parameter λ1 on velocity profile f ′(η). The 
boundary-layer thickness declines with an increase in the ratio of relaxation retardation time of 
Jeffrey fluid. The outcomes of an increase in parameters λ1 on the temperature profile θ′(η) and 
on the concentration profile ϕ′(η) are plotted in figs. 4(b) and 5(a), respectively. Both thermal and 
concentration boundary-layers are slightly increased with an increase in parameters λ1. 

Figure 5(b) clearly demonstrates the impact of a Prandtl number, increase on the tem-
perature profile. As Prandtl numbers increases, the temperature gradient decreases. The Prandtl 
number is the ratio of momentum and thermal diffusivity. Hence, for higher Prandtl numbers, 
the momentum diffusivity terms lead to thermal diffusivity, and the fluid velocity is high enough 
to assist the heat transfer in the region and cause the heat dissipation occur quicker. Next, 
the impact of the increment in the non-dimensional thermal relaxation time γ is observed in  
fig. 6(a). There is a lower value of thermal conductivity in fluids when γ increases. Physically, 
it conveys that the time taken for the fluid to experience heat conduction gets longer, causing 

Figure 3. (a) Impact of β on θ(η) and (b) impact of β on ϕ(η),  
when Pr = 1.5 = Sc, λ1 = 0.5 = M, and γ = 0.6 

Figure 4. (a) Impact of λ1 on f ′(η) and (b) impact of λ1 on θ(η),  
when Pr = 1.5 = Sc, γ = 0.6, M = 0.5, and β = 0.3
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the thermal boundary-layer to be thinner. In other words, heat dissipation occurs quickly. Fig-
ure 6(b) exhibits the effect of the Schmidt number, on the concentration profile. The Schmidt 
number is defined as the ratio of momentum diffusivity, which is analogous to the Prandtl 
number for the temperature gradient. As shown in fig. 6(b), when Schmidt number increases, 
momentum diffusivity dominates and the velocity of the fluid is high enough to facilitate mass 
distribution, which causes the concentration gradient to decrease faster. 

Figure 5. (a) Impact of λ1 on ϕ(η) and (b) impact of Pr on θ(η),  
when Sc = 1.5, γ = 0.6, M = 0.5 = λ1, and β = 0.3

Figure 6. (a) Impact of γ on θ(η) and (b) impact of Sc on ϕ(η),  
when Pr = 1.5, γ = 0.5 = M = 0.5 = λ1, and β = 0.3

Conclusions 

The present study describes the boundary-layer flow of MHD Jeffrey fluid with the 
Cattaneo-Christov heat and mass transfer effect subject to the Sakiadis boundary flow. The 
main observations of this study are as follows.

 y An increase in the Deborah number leads to a decrease in the thermal and concentration 
boundary-layer thickness.

 y Increasing the Prandtl number reduces the temperature and thermal boundary-layer thick-
ness.



Othman, Z. S., et al.: Cattaneo-Christov Heat Flux Effect on Sakiadis ... 
THERMAL SCIENCE: Year 2023, Vol. 27, No. 6B, pp. 4861-4875 4873

 y An increase in the non-dimensional thermal relaxation time results in a lower temperature.
 y It is observed that concentration boundary-layer thickness decreases with increasing Schmidt 

numbers.
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Nomenclature
B0  – uniform magnetic field, [T]
c – positive constant, [–] 
cp  – constant specific heat, [Jkg–1K–1] 
C  – mass concentration, [kgm3] 
Cw  – concentration at the stretching sheet, [kgm–3]
C∞  – ambient concentration, [kgm–3] 
Cf  – skin-friction coefficient, [–] 
D  – mass diffusion coefficient
f  – dimensionless stream function, [–]
I  – identity tensor, [–]
k  – thermal conductivity, [Wm–1K–1] 
M  – magnetic field parameter or  

Hartmann number, [–]
Nux – local Nusselt number, [–]
Pr  – Prandtl number, [–]
p  – pressure, [Pa]
q  – heat flux, [Wm–2]
qw  – surface heat flux, [Wm–2]
qm  – surface mass flux, [Wm–2] 
R1  – Rivlin-Ericksen tensor, [Pa] 
Rex – local Reynolds number, [–] 
S  – extra stress tensor, [Pa] 
Sc  – Schmidt parameter, [–]
Shx – local Sherwood number, [–]
T – temperature of Maxwell fluid
T  – fluid temperature, [K]

Tw  – temperature of the stretching sheet, [K] 
T∞  – ambient temperature, [K] 
U∞  – linear velocity, [ms–1]
u, v – velocity components along the x- and 

y-directions, respectively, [ms–1] 
V  – velocity vector, [ms–1] 
x, y  – Cartesian co-ordinates along the surface and 

normal to it, respectively, [m] 

Greek symbols

α  – thermal diffusivity, [Wm–1K–1] 
β  – Deborah number, [–]
γ  – non-dimensional thermal  

relaxation time, [second] 
θ  – dimensionless temperature, [–]
λ1 – relaxation retardation time ratio, [–]
λ2  – retardation time, [second]
λ3 – relaxation time of the heat flux, [second] 
µ  – dynamic viscosity, [kgm–1s–1]
n – kinematic viscosity, [m2s–2]
ρ  – fluid density, [kgm–3]
σ  – electrical conductivity, [Sm–1]
τ  – Cauchy stress tensor, [Pa]
τw  – shear stress, [kgm–1s–2] 
ψ  – stream function, [–]
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