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In this paper, a new fractional exothermic reactions model with constant heat 
source in porous media considering the memory effect is proposed. Applying the 
fractional complex transform, the fractional model is converted into its partner. 
Then the variational principle of the problem is successfully established. Based 
on the obtained variational principle, the Ritz method is used to seek the solution 
of the fractional model. Finally, the correctness and effectiveness of the proposed 
method are illustrated by the numerical results with the aid of the MATLAB. The 
obtained results show that the proposed method is easy but effective, and is expect-
ed to shed a bright light on practical applications of fractional calculus.
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Introduction

An exothermic reaction is a reaction of chemical or physical type that gives energy in 
the form of light and heat and dispenses net energy to its locality. Considering a porous material 
wall thickness with 0 < u < L, a pseudo-homogeneous model to represent convective driven by 
an exothermic reaction can be formulated [1-5]:
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where y is the temperature, β – the maximum feasible temperature without free convection,  
ε2 – the ratio of the characteristic time for diffusion of heat generator, and k – the stands for the 
dimensionless activation energy. In the case of the constant heat source, eq. (1) is simplified:
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with the boundary conditions:
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It is well known that integer order derivatives are local in nature, so these deriva-
tives do not accurately describe the problem, especially for processes with historical memory. 
Recently, the fractal and fractional derivatives have drawn wide attention, and has been used 
widely to describe many complex phenomenon arising in different fields such as the bioscience 
[6-8], optics [9, 10], cold plasma [11], vibration [12-14], circuits [15, 16], unsmooth boundary 
[17-22] and so on [23-29]. Due to the non-local and non-singular properties of the fractional 
derivatives, the fractional derivatives are more suitable for modelling the complex processes 
with historical memory than integer derivatives. So we take a modification for eq. (2) to estab-
lish a new fractional model with the memory effect via He’s fractional derivative, which reads:
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is He’s fractional derivative that is defined [30-33]:
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Variational principle 

The variational principle shows the energy conservation of the whole solution domain 
and plays a key role in the numerical and analytical analysis of practical problems. In addition-
al, the variational theory is the basis of the variational iteration method [34, 35]. So a varia-
tional-based analytical solution is an optimal one for solving the practical problem. For solving  
eq. (3), we use the following fractional complex transform [36-38]:
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Equation (3) can be converted:
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In order to establish the variational principle of eq. (6), we first re-write eq. (6) in the 
form:
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The variational principle of eq. (8) can be easily established as [39-45]:
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The obtained variational principle in eq. (9) is the theoretical basis of Ritz method. In 
the following content, we will use the Ritz method to solve eq. (8).

The Ritz method

We assume the solution of eq. (8) taking the form:

( ) 3 2y U aU bU cU d= + + + (10)

Applying the boundary conditions of eq. (7), we have:
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So we get the expression of y(U) with the variable of a:
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Substituting it into eq. (9):
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The Ritz method is also called the variational direct method. It can transform the sta-
tionary condition of a functional into the stationary condition of a function, so as to obtain the 
approximate solution. Applying the Ritz method [46-48], we require:
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Then we can get the value of a:
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The solution of eq. (8) is obtained:
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Correspondingly, we can get the solution of eq. (3) via the transform given by eq. (5):
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Obviously, when α = 1, the aforementioned expression becomes the solution of  
eq. (2):
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Results and discussion

When α = 1, ε = 0.5, and β = 12, the solution of our method compared with FDM [1], 
HATM [2] are shown in tab. 1. It can be seen that the different methods present a well agree-
ment, but our method is simple.

Table 1. Comparison of different method  
for α = 1, ε2 = 0.5, and β = 12

u Our method FDM [1] HATM [2]
0 2.47153 2.4804 2.48066

0.1 2.44920 2.4566 2.45685
0.2 2.38113 2.3851 2.38531
0.3 2.26574 2.2655 2.26567
0.4 2.10146 2.0972 2.09734
0.5 1.88668 1.8793 1.87948
0.6 1.61983 1.6109 1.61099
0.7 1.29932 1.2904 1.29054
0.8 0.92357 0.9164 0.91652
0.9 0.49099 0.4870 0.48705
1.0 0 0 0

When α = 1, β = 12, the behavior of y(u) 
with different value of ε2 is plotted in fig. 1, 
where it can be noticed that, if the value of ε is 
increased, then the enhancement in temperature 
profile is caused. 

For choosing ε2 = 0.5, β = 12, the influ-
ence of different fractional order α on the tem-
perature profile of y(u) is shown in fig. 2, where 
it can be found that an increase in the value of 
α can cause the enhancement in temperature 
profile. 

By using ε2 = 1, β = 12, the behavior of 
the solution with different fractional order is 
plotted in fig. 3. In this case, we can observe Figure 1. Plots of y(u) with different  

value of ε2 when α = 1, β = 12
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that the increase of α will lead to the enhancement of temperature distribution, which is the 
same with the conclusion that drawn when selecting ε2 = 0.5, β = 12.

Figure 2. Plots of y(u) with different 
fractional order α when ε2 = 0.5, β = 12

Figure 3. Plots of y(u) with different  
fractional order α when ε2 = 1, β = 10

Conclusion

Taking into account of the memory effect, a new fractional exothermic reactions mod-
el with constant heat source and porous media is proposed in this paper. With the help of the 
fractional complex transform, the fractional differential equation is converted into a partial dif-
ferential equation. Then the variational principle is developed and the Ritz method is employed 
to solve the problem. Compared with the existed methods, a well agreement is reached, which 
shows that the proposed method is easy but effective.
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