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In this paper, the convective-radiative fins of rectangular profile with tempera-
ture-dependent thermal conductivity are considered. By studying the conventional 
heat transfer equation, its modified fractal form, which can describe the problem in 
the porous medium, is presented based on He’s fractal derivative for the first time. 
The fractal two-scale transform method together with the Taylor series are applied 
to deal with fractal model, and an analytical approximate solution is obtained. 
The impact of the different fractal orders on the thermal behavior of the fins is 
also elaborated in detail. In addition, a comparison between our solution and the 
existing one is given to prove the correctness of the proposed method, which shows 
that the proposed method is easy but effective, and are expected to shed a bright 
light on practical applications of fractal calculus.
Key words: He’s fractal derivative, porous medium, Taylor series, 

fractal two-scale transform method

Introduction

The heat transfer devices with high heat transfer rates, low cost and small size are 
much required in many engineering applications. As a heat transfer rate device, the Fins have 
been used widely in many engineering systems as heat exchangers to dissipate the heat [1-5]. At 
present, many research results have been achieved in the theoretical research of fins, such as the 
perturbation techniques [6-8], the decomposition method [9, 10], the differential transformation 
method [11, 12], integral equation method [13, 14] and so on. The general shape of rectangular 
fin is shown in the fig. 1, the 1-D governing ODE for the 1-D convective-radiative straight fin 
of rectangular profile with cross-sectional area, A, and length, L [15]:

( ) ( )4 4d d 0, 0
d d s a

TkA P T T hP T T x L
x x

εσ  − − − − = < < 
 

(1)

where h is the heat convection transfer coefficient, k – the thermal conductivity, σ – the Ste-
fan-Boltzmann constant, ε – the surface emissivity, and x – the distance measured from the fin 
tip.

The thermal conductivity (TC) k(T), which is the function of the local temperature 
change at any position, can be expressed [15]:

( ) ( )1a ak T k T Tλ = + −  (2)
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The boundary conditions of the the base and the 
fin tip are given [15]:

d 0 for 0
d
T x
x
= = (3)

and

forbT T x L= = (4)

  By using the dimensionless transform, eq. (1) can be 
re-written [15]:

( ) 2 4
d d1 0, 0 1
d d rm x
x x

θαθ θ ε θ + − − = < <  
(5)

with the boundary condition:

( ) ( )0 0, 1 1θ θ′ = = (6)

where the dimensionless transform takes the form [15]:
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where ka is the thermal conductivity at temperature of a surrounding fluid, Ta – the temperature 
of a surrounding fluid, Tb – the temperature at fin’s base, P – the perimeter of cross-section, and 
λ – the measure of thermal conductivity variation with temperature.

The fractal modification

Through the previous introduction, we found 
that eq. (5) can well describe the steady heat conduc-
tion model of convective-radiative fins with tempera-
ture dependent thermal conductivity. However, when 
the fins are the porous medium, fig. 2, it becomes in-
valid, so we need to give a modification of it. Recently, 
the fractal and fractional calculus are adopted to mod-
el many complex phenomenon arising in the extreme 
conditions such as the un-smooth boundary [16-21], 
microgravity space [22, 23], fractal media [24], porous 
media [25], and so on [26-28]. Inspired by these re-
search results, here we apply the fractal calculus to eq. 
(5) to derive its fractal modification form which can 
model the problem in the porous medium:

( ) 2 4d d1 0, 0 1
d rm x

x dxζ ζ
θαθ θ ε θ + − − = < <  

(7)

where 0 < ζ ≤ 1, d/dxζ is He’s fractal derivative that is defined [29-31]:

Figure 1. The rectangular convective-
radiative fin with an insulated tip

Figure 2. Schematic of a porous fin
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where ψ is the smallest porous size and ζ – the the fractal dimension of the porous structure. In 
the following content, we mainly try to solve eq. (7) by using the fractal two-scale transform 
and Taylor series method [32-35].

Solution of the fractal modification 

The two-scale transform is first proposed by He and used widely to solve the fractal 
PDEs [36, 37]. Using the fractal two-scale transform with the form [38-40]: 

S xζ= (8)
The eq. (7) can be converted into the form:

( ) 2 4d d1 0
d d rM

S S
θαθ θ ε θ + − − =  

(9)

with the boundary conditions:
( ) ( )0 0, 1 1θ θ′ = = (10)

In order to use Taylor series method, we set:
( )0 nθ = (11)

Then we can get the value of θ″(0) by setting S = 0 for eq. (9):
4 2

(0)
1

r n M n
n

ε
θ

α
+′′ =
+

(12)

Then, we differentiate eq. (9) with respect to S, which gives:

( ) ( ) ( ) ( ) ( ) ( ) ( )321 3 4 0rS S M S S S S Sαθ θ θ αθ θ ε θ θ′′′ ′ ′ ′′ ′ + − + − =  (13)

By letting S = 0 and using the boundary conditions in eqs. (10)-(12) for the previous 
equation, we can get:

  ( )0 0θ ′′′ =

In the same manner, we have the following expression by differentiating eq. (13) with 
respect to S:
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which leads to
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where θ(0) and θ″(0) are given in eqs. (11) and (12), respectively.
Similarly, we can get θ(5)(0), θ(6)(0), θ(7)(0)... and so on.
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Then the approximate solution of θ(S) in the form of Taylor series can be written:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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1 10 0 ...
6! 7!

S S S S S S
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θ θ θ θ θ θ θ

θ θ

′ ′′ ′′′= + + + + + +

+ + +
(14)

If the values of α, M, and εr are given once, the value of n can be determined by using 
the boundary condition θ(1) = 1. Therefore, we can get the corresponding approximate solution 
of θ(x) with the form:
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ζ ζ

θ θ θ θ θ θ θ

θ θ

′ ′′ ′′′= + + + + + +

+ + +
(15)

The solution process can continue if a higher order approximate solution is needed. 
When ζ = 1, the aforementioned expression becomes the solution of eq. (1). Next, we are going 
to use two examples to verify the correctness of our proposed method.

Example 1. Consider M = 0.5, εr = 0.8, and α = 0.2, the value of n can be obtained by 
using the boundary condition θ(1) = 1 with 6th Taylor series:

n = 0.76961489
Then the solution of θ(x) = 1 can be obtained in the form of 6th Taylor series:
( ) 2 4 60.76961489 0.20498156 0.021653242 0.0037503027x x x xζ ζ ζθ = + + + (16)
We present the behavior of the previous equation in fig. 3 for ζ =0.02, 0.2, 0.4, 0.7, 

0.9, and 1.0. For the case ζ = 1, the results obtained of our method agree well with that of the 
existing exact method (the green line) in [15], the compared results are shown in tab. 1, which 
proves the correctness of our method.

Table 1. Numerical comparison when ζ = 1

M = 0.5 εr = 0.8 α = 0.2 M = 0.5    εr = 0.8 α = 0.2

x Our method [15] [15] Our method [15] [15]

0 0.7696 0.7692 0.7688 0.6306 0.6294 0.6448

0.1 0.7717 0.7713 0.7711 0.6339 0.6327 0.6483

0.2 0.7778 0.7774 0.7781 0.6438 0.6426 0.6590

0.3 0.7882 0.7878 0.7896 0.6605 0.6593 0.6767

0.4 0.8030 0.8025 0.8058 0.6842 0.6829 0.7016

0.5 0.8223 0.8218 0.8266 0.7151 0.7137 0.7336

0.6 0.8464 0.8459 0.8521 0.7538 0.7523 0.7726

0.7 0.8757 0.8752 0.8821 0.8007 0.7992 0.8188

0.8 0.9107 0.9102 0.9168 0.8567 0.8552 0.8721

0.9 0.9518 0.9515 0.9561 0.9227 0.9216 0.9325

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Example 2. When M = 1, εr = 1.5, and α = 0.5, the value of n can be determined by 
using the 6th Taylor series:
 n = 0.6307221768

Correspondingly, we get the solution of θ(x) with 6th Taylor series:
( ) 2 4

6

0 0.630572215768 0.32986218014 0.0316579414721

0.00790766261934

x x x

x

ζ ζ

ζ

= + + +

+
(17)

Figure 4 plots the solution of eq. (17) for ζ = 0.03, 0.2, 0.4, 0.6, 0.8, and 1.0. As ex-
pected, the results of our method and the existed exact method [15] have a good agreement in 
case ζ = 1 (the results are presented in tab. 1). Moreover, figs. 3 and 4 have a common feature, 
that is, the smaller the value of ζ is, the higher the temperature value is, which means the worse 
the heat transfer performance of fin. This is related to the porous structure of the fin. Here there 
is ζ = 1 – β, where β represents the porosity of the fin. For β → 0, it means the fins of non-porous 
media, which exhibition a better heat transfer performance.

Conclusion

This paper proposed a fractal model of the convective-radiative porous fins with tem-
perature-dependent thermal conductivity in the porous medium based on He’s fractal derivative. 
A simple method based on the fractal two-scale transform and the Taylor series is suggested to 
solve the problem. The impact of the fractal dimension ζ on the thermal behavior is elaborated 
in detailed. Furthermore, our obtained solution for ζ = 1 is also compared with the existing one, 
and a well agreement is reached. The obtained results in this paper are expected to shed a bright 
light on practical applications of the fractal calculus.
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