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With the characteristics of high energy conversion efficiency, high energy den-
sity and low operating temperature, the proton exchange membrane fuel cells 
(PEMFC) have become one of the green energy sources with broad prospects. 
The establishment of accurate mathematical model of the PEMFC is the basis 
of simulation and control strategy. At present, some intelligent algorithms have 
certain drawbacks, and can hardly find the balanced point between precision and 
computational time. In this study, a novel parameter identification approach com-
bining the hybrid particle swarm optimization (PSO) algorithm with differential 
evolution, i.e. hybrid DEPSO, is proposed to obtain the unknown parameters in 
the PEMFC mathematical model and solve the problems of premature convergence 
of PSO and poor global search ability of differential evolution. Six benchmark 
functions are applied to verify the performance of the algorithm. The results prove 
that the hybrid DEPSO can evade local optimum preferably while having swifter 
convergence rate. Two PEMFC stacks are investigated and modeled. In order to 
evaluate the accuracy of model, the sum of squared errors between the measured 
voltage and the estimated output voltage are examined. Numerical results show 
higher accuracy of the hybrid DEPSO-based model comparing with other recently 
published optimization approaches. Furthermore, the simulation results indicate 
that the accuracy of the PEMFC model optimized by the hybrid DEPSO algorithm 
improves 0.19-1.86%, which can provide a new solution the multi-objective opti-
mization problem and promote the practical application of the PEMFC. 
Key words: PEMFC, parameters identification, 

PSO algorithm, differential evolution algorithm

Introduction

Ships typically use Diesel engines as power source, which produce a large amount 
of SOx, CO2 and particulate matter, causing damage to the environment. Compared with other 
traditional energy sources, hydrogen energy is a reliable, efficient and durable energy source 
that continuously converts input hydrogen into electricity [1]. Hence, hydrogen energy and fuel 
cell technology is a major strategic direction of the world energy transformation and power 
transformation, and an important strategic measure to deal with the global energy shortage and 
reduce environmental pollution [2]. The working principle of PEMFC is shown in fig 1. 
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Due to its characteristics of multi-vari-
able, strong coupling and non-linear, traditional 
modelling methods are difficult to capture the 
PEMFC performance. In general, the complex 
systems are transformed into non-linear mul-
tidimensional functions, and then intelligent 
algorithms are used to solve the optimal value 
problems. The search ability and solving ability 
of the adopted optimization algorithm deter-
mine the accuracy of the model parameter iden-
tification. In recent years, with the development 

of artificial intelligence technology, various optimization algorithms emerge one after another, 
providing various effective methods and means for solving complex optimization problems, 
such as manta ray foraging optimization (MRFO) algorithm [3, 4], grey wolf Optimization al-
gorithm [5], genetic algorithm [6], PSO algorithm [7, 8], whale optimization algorithm (WOA) 
[9], and differential evolution (DE) algorithm [10-12], etc. These methods and means can solve 
and optimize the complex models, but there are still problems in accuracy, speed and stability. 
Traditional methods such as DE algorithm and PSO are prone to premature phenomenon and 
fall into local optimum, so it is difficult to ensure the accuracy of the results. In order to solve 
the problem of premature convergence of the algorithm and improve the global search ability, 
various research work has been carried out. Zhong and Peng [13] proposed a dual-strategy 
improved DE algorithm to improve the global performance of DE algorithm. Tan et al. [14] 
introduced deep network to select mutation strategies by means of deep reinforcement learning. 
Zhao et al. [15] proposed a DE algorithm with neighboring mutation operator and opposition 
learning, which introduced new evaluation parameters and weight coefficients to replace large-
scale global variation with higher search efficiency. 

In order to solve the previous problems and make the model more accurate, this study 
proposed a hybrid PSO algorithm based on DE, which combines the strong global search abil-
ity of PSO algorithm with the characteristics of rapid convergence and high robustness of DE 
algorithm. Considering that different mutation strategies have impacts on the accuracy and con-
vergence of the algorithm, this study selects the appropriate mutation strategy based on ranking. 
Meanwhile, with the purpose of further improve the searching ability and solving accuracy of 
hybrid DEPSO algorithm, a search strategy based on Levy flight is employed.

Mathematic model of PEMFC

The PEMFC generate liquid water when fully reactive, with a standard potential of  
1.229 V. The actual output voltage is influenced by three main aspects: activation overvoltage, 
ohmic overvoltage and concentration overvoltage. Therefore, the output voltage of the PEMFC 
can be expressed as [5]:

cell Nernst act ohmic conV E V V V= − − − (1)
If n single cells are connected in series, the voltage of stack is:

stack cellV nV= (2)
According to the equilibrium equation of hydrogen-oxygen reaction, the Nernst equa-

tion, which calculates the thermodynamic potential, can be given [6]:
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Figure 1. Fundamental diagram of PEMFC
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where constant 1.229 is the standard potential, V, at 25 ℃, PH2 and PO2 are the effective partial 
pressures of H2 and O2 of PEMFC, respectively.

If the reactants are air and hydrogen, the partial pressure PO2 can be obtained from  
eq. (4). If the reactants are oxygen and hydrogen, PO2 is obtained using eq. (5) [6-9]:

2 2 2

0.832
O c c H O O

0.79 exp 0.291
0.21

iP P RH P P T
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−    = − ⋅ −         
(4)
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(5)

where RHa and RHc are the relative humidity of anode and cathode vapors, respectively, Pa and 
Pc – the input pressure of anode and cathode, A – the active area of the PEMFC, and P sat

H2O – the 
saturation pressure of water vapor, which is a function of the operating temperature, T, and can 
be expressed:

2

sa 2 5 2 7 3
H Olog( ) 2.95 10 ( 273.15) 9.18 10 ( 273.15) 1.44 10 ( 273.15) 2.18tP T T T− − −= ⋅ − − ⋅ ⋅ − + ⋅ − − (6)

The activation loss is caused by the activation polarization of the cell, and this part of 
the voltage loss is used to activate the electrochemical reaction. This loss is calculated:

2act 1 2 3 O 4 cellln( ) ln( )V T T C T iξ ξ ξ ξ= + + + (7)

where ξi (i =1...4) is the semi-empirical coefficients and CO2 – the concentration of dissolved 
oxygen at the cathode can be calculated by the formula:

2
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O 6[5.08 10 exp( 498 / )]

P
C

T
=

⋅ −
(8)

The ohmic overvoltage loss is mainly caused by the electric potential generated by 
the impedance of protons passing through the proton exchange membrane and the equivalent 
membrane impedance to proton transfer. 

The voltage drop caused by ohmic loss is proportional to the current density, which 
can be obtained from the equation:

ohmic M( )CV i R R= + (9)
where RC is the equivalent resistance of electron transfer, usually considered as constant and 
RM – the equivalent resistance of membrane to proton movement, and the calculation formula:

M
M

LR
A

ρ
= (10)

where L is the exchange membrane thickness and ρM – the resistivity of electron flow, which 
can be calculated by the method mentioned in [5]:
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(11)

where λ is a parameter related to gas humidity of the membrane.
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Concentration differential pressure drop Vcon is generated due to the change of reactant 
concentration and is calculated:

con
max

ln 1 JV B
J

 
= − − 

 
(12)

where B is a coefficient parameter that depends on operation state, J – the current density, and 
Jmax – the maximum current density.

Optimization method

Fitness function definition

There are some unknown parameters in the mathematical functions of the PEMFC 
model, which will affect the accuracy of fuel cell model prediction, thus it is necessary to 
identify the parameters properly. For determining the optimal value of parameters and make 
the model more accurate, the minimization of the sum of squares error between the measured 
voltage and the estimated output voltage is used as the optimization objective function. From 
the aforementioned description, the following formulae can be obtained:

( )2
1

1 ,max

min max

,min ,max

min max

min ( ) min

, 1,2,3,4.

k

m e
k

i

C C C

f x V V

is t

R R R
B B B

ξ ξ ξ
λ λ λ

=

    = − 
   
 ≤ ≤ ∀ =


≤ ≤
 ≤ ≤
 ≤ ≤

∑

(13)

where k is the number of samples, Vm – the actual measured voltage of the PEMFC, and Ve – the 
output value. The objective function of optimization is the function of the unknown parameters 
ξ1, ξ2, ξ3, ξ4, λ, RC, and B.

According to the description of the [16-18], the limits of parameters range are shown 
in tab. 1.

Table 1. Ranges of parameters
Parameters ξ1 ξ2 ξ3 ξ4 λ R C B
Lower limit –1.1996 0.001 3.6 ⋅ 10–5 –2.60 ⋅ 10–4 10 0.0001 0.0136

Upper limit –0.8532 0.005 9.8 ⋅ 10–5 –9.54 ⋅ 10–5 24 0.0008 0.5000

Improved algorithm 

Kennedy and Eberhard [19] first proposed PSO in IEEE international conference on 
neural networks. The PSO algorithm has good performance in solving optimization problems, 
but it also has some shortcomings, such as slow convergence speed, low accuracy, easy to fall 
into local optimal. The DE algorithm has good convergence, but its accuracy is still deficient. 
In DE algorithm, different mutation strategies of parent vector will generate different mutation 
vectors, and a single invariant mutation strategy will generate different mutation vectors for dif-
ferent parent vectors. Based on the aforementioned points, this paper proposed hybrid DEPSO 
with the following specific strategies:
 – Particle swarm search strategy based on Levy flight.
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 – Mutation strategy based on rank selection model.
 – Hybrid PSO algorithm with DE.

Particle swarm search strategy based on Levy flight

In PSO, the position of the i + 1 particle is determined by the velocity and position 
of ith particle. These particles are initially randomly and uniformly distributed throughout the 
search space. Then, they share their position continuously, and finally get the optimal solution. 
The diversity of population determines the global search capability of the algorithm, and PSO 
is prone to local convergence and premature phenomenon. Therefore, inspired by Levy flight 
trajectory [20, 21], a particle swarm search strategy is proposed in this paper:

1 Levy( )t t
i ix x δ+ = −⊕ (14)

where xi
t+1 is the position of ith particle in the t + 1 iteration, ⊕ – thepoint-to-point multiplica-

tion, and Levy(δ) – the random search path, which is obtained.

best1/evy( ) ~ 0.01 ( )i i
uL x x

v δδ − (15)

where the range of δ is (1, 3), Xibest – the optimal position of the particle, and U and V – the 
conform to the normal distribution as shown:

2 2~ (0, ), ~ (0, )u vu N vδ δ (16)
The values of δ2
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v are: 
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Γ β βδ β δ
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 +  = +      

(17)

where β is a control parameter that follows normal distribution. At this moment, the particle 
swarm will record the optimal position found, update the current position, and repeat the pre-
vious behavior until a particle in the swarm reaches the set precision or the maximum number 
of iterations T.

Mutation strategy based on rank selection model

During the mutation operation of DE algorithm, many different mutation strategies 
have been proposed [16-18]:
 – The DE/rand/1

( ), 1, 2, 3,
t t t t
i j r j r j r jv x F x x= + − (18)

 – The DE/best/1

, best 1, 2,( )t t t
i j r j r jv F F x x= + − (19)

 – The DE/rand-to-best/1
( ),, 1 best 2,

t t t
i j r j r jv x F F x= + − (20)

 – The DE/best/2
( ) ( ), ,, best 1 2, 3 4,

t t t t t
i j r j r j r j r jv F F x x F x x= + − + − (21)

 – The DE/rand/2
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( ) ( ), , ,, 1 2 3, 4 5,
t t t t t t
i j r j r j r j r j r jv x F x x F x x= + − + − (22)

In general, the five random numbers r1, r2, r3,r4 , and r5 in eks. (18)-(22) are randomly 
selected from the parent vector, which leads to the possibility that excellent individuals may 
not be all selected. Therefore, excellent individuals have more opportunities to participate in 
crossover and selection operations through sorting and selection:
 – Ranking strategy

The fitness values of each individual in the population from best to worst are ranked, 
as shown:

, 1,2,...iR NP i i NP= − = (23)
where Ri is the ranking value of the ith individual and NP – the size of the population.
 – Selection strategy

, 1,2,...i
i

R
P i NP

NP
= = (24)

where Pi is the probability of the ith individual being selected in the population, and the higher 
ranking of the order means the higher probability to be selected.

Improved algorithm steps

The hybrid DEPSO combines the advantages of DE algorithm and PSO in fast con-
vergence, and introduces Levy flight strategy to expand the global search capability and effec-
tively avoid falling into premature convergence. The mutation strategy based on rank selection 
model is employed to make more excellent individuals selected. The steps are as follows, as 
shown in fig. 2:

 – set the population size, dimension, iteration 
times, values of parameters CR, NP, C1, C2, 
initial position and speed of initialization 
population,

 – calculate the fitness of each particle, record 
the individual optimal position and the glob-
al optimal position of the population, and 
update the individual velocity and position 
according to levy flight strategy by using 
eqs. (20)-(23),

 – compare the optimal location of the indi-
vidual with the optimal location of the pop-
ulation, update the optimal location of the 
population, returning the location and fitness 
value of the best individual, and 

 – judge whether the preset accuracy is reached,  
if so, output the result, otherwise, run the 
differential evolution algorithm to select and 
cross-operate the mutation strategy until the 
accuracy requirement is met or the maxi-
mum number of iterations is reached. Figure 2. Flowchart of the hybrid DEPSO

file:///C:/Users/User/Desktop/23%20ThSci2022.214/javascript:;
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Algorithm testing and analysis

Six benchmark functions including Ackley, Griewank, Rastrigin, Rosenbrock, 
Schwefel, and Sphere are used in this study to verify the effectiveness and superiority of the 
algorithm. In order to increase the reliability of the algorithm, DE, PSO, MRFO, WOA, and 
hybrid DEPSO proposed in this paper are used to test these functions. The population size, 
maximum number of iterations, and dimension are the same in all algorithms, where in specific 
the population size NP = 50, the maximum iteration T = 1000, and the dimension D = 30. 

Under the condition that the initial population size remains unchanged, the five al-
gorithms are independently run for 20 times, and the test results are shown in tab. 2. The con-
vergence curves of the six test functions are given in figs. 3-8. From figs. 3, 7, and 8, it can be 
clearly seen that hybrid DEPSO algorithm has fast convergence speed on Ackley, Schwefel, 
and Sphere functions, that is, the convergence can be completed within 300 generations, and it 
has a good convergence accuracy in the later stage. Figure 4 shows that there is little difference 
between hybrid DEPSO algorithm and WOA algorithm in solving accuracy, but hybrid DEPSO 
algorithm has faster convergence speed than WOA in the early stage. As indicated in fig. 5, 
the convergence speed of MRFO algorithm is better than that of hybrid DEPSO algorithm, but 
the solving accuracy becomes worse in the later stage. At this time, DE algorithm completes 
convergence around 300 generations, but the accuracy is not high, which may be due to falling 
into the local optimal value. As can be seen from fig. 6, except WOA algorithm, the other four 
algorithms have little difference in convergence speed, which are MRFO, PSO, DE, and hybrid 
DEPSO in sequence. From the point of view of solving accuracy, the order is MRFO, hybrid 
DEPSO, DE, and PSO. To sum up, the improved algorithm proposed in this study greatly im-
proves the global search ability and optimization ability of the original algorithm.

Table 2. Mean and STD on six functions

Function MRFO WOA DE PSO Hybrid DEPSO

Ackley
Mean 5.6351 ⋅ 10–15 7.9936 ⋅ 10–15 3.2863 ⋅ 10–14 1.8652 ⋅ 10–14 8.8818 ⋅ 10–16

STD 2.7486 ⋅ 10–15 3.6142 ⋅ 10–15 4.3521 ⋅ 10–14 1.8208 ⋅ 10–13 5.6351 ⋅ 10–15

Griewank
Mean 1.0311 ⋅ 10+00 1.8371 ⋅ 10–02 9.8647 ⋅ 10–03 9.8573 ⋅ 10–03 6.0348 ⋅ 10–03

STD 1.0599 ⋅ 10+00 1.8914 ⋅ 10–02 5.6211 ⋅ 10–02 1.2625 ⋅ 10–03 7.5231 ⋅ 10–03

Rastrigin
Mean 5.1159 ⋅ 10–13 5.4557 ⋅ 10–09 2.4874 ⋅ 10+01 6.6501 ⋅ 10–12 5.6843 ⋅ 10–14

STD 9.0381 ⋅ 10–12 1.1499 ⋅ 10–09 2.4876 ⋅ 10+01 1.4268 ⋅ 10–11 2.2737 ⋅ 10–13

Rosenbrock
Mean 1.9034 ⋅ 10+01 2.4918 ⋅ 10+01 2.7228 ⋅ 10+01 2.7150 ⋅ 10+01 2.3216 ⋅ 10+01

STD 2.3412 ⋅ 10+01 1.4367 ⋅ 10+02 2.7759 ⋅ 10+01 2.7586 ⋅ 10+01 2.1363 ⋅ 10+01

Schwefel
Mean –6.8430 ⋅ 10+03 –6.2410 ⋅ 10+03 –5.600 ⋅ 10+03 –6.627 ⋅ 10+03 –8.1270 ⋅ 10+03

STD –5.9575 ⋅ 10+03 –3.6988 ⋅ 10+03 –6.6365 ⋅ 10+03 –5.5868 ⋅ 10+03 –8.0641 ⋅ 10+03

Sphere
Mean 1.9093 ⋅ 10–180 5.4359 ⋅ 10–60 3.4251 ⋅ 10–12 4.2184 ⋅ 10–190 3.2395 ⋅ 10–263

STD 2.8501 ⋅ 10–85 7.1039 ⋅ 10–45 1.9100 ⋅ 10–08 6.2980 ⋅ 10–89 2.5145 ⋅ 10–83
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       Figure 3. The convergence curve of Ackley             Figure 4. The convergence curve of Griewank

 
      Figure 5. The convergence curve of Rastrigin           Figure 6. The convergence curve of Rosenbrock

     Figure 7. The convergence curve of Schwefel                Figure 8. The convergence curve of Sphere
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Simulation and verification

Some parameters in the PEMFC model cannot directly solve the gradient and other 
related information. In the previous section, this study adopts the hybrid differential PSO algo-
rithm for parameter identification and verifies the effectiveness of the algorithm. For eqs. (1)-
(13) of the PEMFC mathematical model, this study conducted simulation verification under the 
environment of Intel(R) Core (TM) I7-8550U CPU 1.80 GHz and software MATLAB2018b.

In this section, in order to test the effect of the algorithm in practice, two stacks are 
used to verify the simulation results of the algorithm. The stacks are 3 kW, 80 kW, respectively. 

Case study 1 (3 kW PEMFC)

Table 3 shows some parameters and operating environment of PEMFC rated at 3 kW. 
In order to compare the performance of hybrid DEPSO algorithm and other conventional algo-
rithms, the values of unknown parameters obtained by the five algorithms are shown in tab. 4.  
At the same time, the optimal fitness value of each algorithm SSE is also given in the table. 
From tab. 4, the SSE value of hybrid DEPSO algorithm proposed in this study is smaller and 
has higher accuracy. The simulation model verifies that when the hybrid DEPSO algorithm 
achieves the optimal fitness, it is exactly the minimum SSE value between the measured volt-
age and the predicted voltage. The trend of convergence is shown in fig. 9(a), and polarization 
curves of DE, PSO, and hybrid DEPSO algorithms are shown in fig. 9(b). As can be seen from 
the aforementioned two figures, each algorithm is able to converge within 100 generations. The 
hybrid DEPSO algorithm has the highest convergence precision, while the WOA algorithm is 
the lowest. Secondly, hybrid DEPSO algorithm has the highest fitting accuracy, followed by 
DE, and MRFO is the worst. In the actual operation process, the weight of active polarization 
voltage drop is not as large as that in the model, thus each algorithm will have some deviation, 
which may be caused by the error of PEMFC model. Figure 9(c) is the error box plot of the 
algorithm, in which the median error line and mean value of MRFO and hybrid DEPSO algo-
rithms are consistent. It can be seen from the figure that the mean error of hybrid DEPSO is 
around 0.01, and the accuracy is 0.19-1.86% higher than that of others (calculated in tab. 5).

Table 3. The characteristics of the PEMFC (3 kW)
Technical specification

Type of fuel cell PEM
Rated power 3 kW

Ambient temperature 25 °C 
Coolant Air

Reactants Hydrogen and air
Tstack 353 K
Jmax 1 A/cm2

RH2 60%
RO2 40%
n 5
A 100 cm2

Pa 1.5 bar
Pc 0.21 bar
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Table 4. Comparison of optimal results of three algorithms
Parameters MRFO WOA DE PSO Hybrid DEPSO

ξ1 –0.9440 –0.9490 –0.9543 –0.9482 –0.9494
ξ2 0.0034 0.0031 0.0031 0.0032 0.0030
ξ3 7.40 ⋅ 10–05 7.44 ⋅ 10+02 7.40 ⋅ 10–05 7.44 ⋅ 10–05 7.45 ⋅ 10–05

ξ4 –1.98E-04 –1.92 ⋅ 10–04 –1.95 ⋅ 10–04 –1.88 ⋅ 10–04 –1.89 ⋅ 10–04

Rc 1.32 ⋅ 10–04 1.32 ⋅ 10–04 1.33 ⋅ 10–04 1.33 ⋅ 10–04 1.33 ⋅ 10–04

λ 23.14 19.99 20.33 21.43 20.22
B 0.0362 0.0327 0.0319 0.0338 0.0325

SSE 4.44 ⋅ 10–02 4.99 ⋅ 10+00 4.43 ⋅ 10–02 4.45 ⋅ 10–02 4.28 ⋅ 10–02

According to the comparison between the measured data and the simulation data obtained 
by the five algorithms in tab. 5, it can be seen that among the five algorithms, the hybrid DEPSO 
algorithm proposed in this study is higher in accuracy than the other algorithms. Secondly, it can 
be seen from fig. 9(a) that the hybrid DEPSO algorithm has reached the optimal fitness value 
before the 20th generation. To sum up, hybrid DEPSO algorithm combines the advantages of DE 
and PSO optimization algorithms, and can avoid local optimal while completing fast optimization.

Case study 2 (80 kW PEMFC)

The measured data of this case comes from a company in Wuhan. See tab. 6 for spe-
cific parameters. Four test cases of 3 bar/353 K, 1.5 bar/353 K, 3 bar/335 K, and 1.5 bar/335 K  

Figure 9. (a) Trend of 
convergence,  
(b) experimental data and 
model curve validation  
and (c) error graph
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were adopted. The algorithm was independently run for 30 times to verify the performance 
curve of PEMFC. Figure 10(a) compares the simulation results with the experimental data by 
changing the working temperature under the condition that the partial pressures of hydrogen 
and oxygen remain unchanged. Figure10(b) shows the volt-ampere curves of PEMFC obtained 
by changing the partial pressures of oxygen and hydrogen at the same operating temperature. It 
can be seen that the output voltage and current characteristics of the PEMFC model are basical-
ly consistent with the experimental data. 

Table 5. Estimated data and measured voltage data

Measured data
MRFO WOA DE PSO Hybrid

DEPSOImea(A) Vmea(V)

57.656 3.475 3.466 3.473 3.495 3.505 3.493
55.311 3.502 3.488 3.506 3.526 3.531 3.516
53.333 3.523 3.507 3.535 3.547 3.553 3.535
51.648 3.541 3.524 3.562 3.566 3.571 3.552
49.705 3.559 3.542 3.582 3.586 3.593 3.572
47.043 3.590 3.568 3.608 3.613 3.622 3.608
45.207 3.611 3.587 3.627 3.637 3.643 3.627
43.141 3.633 3.607 3.648 3.658 3.666 3.644
41.436 3.654 3.624 3.666 3.679 3.686 3.666
39.434 3.677 3.645 3.687 3.698 3.709 3.687
37.539 3.698 3.665 3.708 3.719 3.731 3.708
35.287 3.723 3.689 3.722 3.746 3.757 3.739
33.802 3.740 3.705 3.749 3.767 3.775 3.759
31.375 3.769 3.732 3.787 3.799 3.805 3.787
29.588 3.792 3.752 3.808 3.816 3.828 3.808
27.463 3.818 3.778 3.835 3.845 3.855 3.835
25.197 3.852 3.806 3.864 3.871 3.886 3.864
23.238 3.878 3.832 3.889 3.899 3.913 3.889
21.124 3.911 3.861 3.919 3.933 3.945 3.919
 19.126 3.939 3.890 3.950 3.961 3.976 3.950
17.368 3.969 3.917 3.978 3.992  4.005 3.978
 15.068 4.010 3.956 4.018  4.034  4.047 4.018
 13.114 4.046 3.993 4.056 4.073  4.085 4.056
11.146 4.089 4.035 4.098 4.107 4.129 4.098
9.085 4.138 4.085 4.150 4.158  4.181 4.149
7.058 4.201 4.145 4.211  4.218  4.244 4.210
5.124 4.273 4.218 4.284  4.289  4.319 4.285
3.146 4.361 4.325 4.393  4.360  4.429 4.377
2.184 4.419 4.403 4.441  4.414  4.508 4.421
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Table 6. The characteristics of the PEMFC(80 kW)
Technical specification

Type of fuel cell PEM
Rated power 80 kW

Ambient temperature 25 °C
Coolant Water

Reactants Hydrogen and air
Tstack 353 K
Jmax 1.40 A/cm2

RH2 80%
RO2 60%
n 300
A 350 cm2

Pa 1.50 bar
Pc 1.50 bar

Figure 10. Case study 2: The comparative curve of experimental and 
modelling data for different temperature and pressures;  
(a) different temperature and (b)different pressures

The error of voltage value obtained by proposed algorithm may be caused by a small 
amount of hydrogen at the anode infiltrating from the proton exchange membrane to the cath-
ode, a small amount of electrons flowing through the proton exchange membrane to the outside, 
poor insulation and other factors. Therefore, a part of the current of PEMFC is not calculated in 
the mathematical model, resulting in the errors. Secondly, the PEMFC used in this experimental 
case uses water as coolant, and the temperature difference between the inlet and outlet of cool-
ing water is between 0.3-3 ℃, and the internal temperature is not easy to measure. However, 
the proposed algorithm adopts a mathematical model under ideal conditions, which may lead to 
errors between measured data and simulation data. But in general, the hybrid DEPSO algorithm 
proposed in this study is effective for parameter identification of PEMFC model. 
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Conclusions

In order to identify uncertain parameters of PEMFC model in the non-linear steady-
state system, this paper proposes a novel hybrid DEPSO algorithm, which has the following 
three major contributions.

 y The hybrid DEPSO algorithm combines the advantages of many strategies to realize effec-
tive and reliable parameter identification of PEMFC.

 y The effectiveness and feasibility of hybrid DEPSO algorithm in PEMFC parameter identifi-
cation are evaluated, and compared with that of other four typical algorithms.

 y Three case studies of 3 kW, 80 kW stacks were carried out to verify that hybrid DEPSO can 
significantly improve the accuracy, convergence speed and stability of PEMFC parameter 
identification under different operating conditions. In specific, the accuracy of parameter 
identification of hybrid DEPSO can be improved by 51.49%, 86.42%, 59.12%, and 43.47% 
in comparison with that of MRFO, WOA, DE, and PSO, respectively.

Nevertheless, in the process of research, we found that the proposed method still ex-
ists some limitations, for instance the hybrid DEPSO adopts mathematical model of PEMFC 
under ideal conditions, and better results may be obtained by incorporating the influence of 
leakage current into the model. In conclusion, the hybrid DEPSO algorithm has superiority for 
solving multi-objective optimization problems, which will be applied for solving other similar 
collaborative optimization problems of engineering models.
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Nomenclature 
A  – active area of the PEMFC
B – coefficient parameter
CO2 – concentration of dissolved oxygen
i – current
J – current density
Jmax  – maximum current density
L  – thickness of exchange membrane
NP  – size of the population
Pa, Pc  – input pressure of anode and cathode
PH2  – effective partial pressures of H2 
PO2  – effective partial pressures of O2 
Psat

H2O
  – saturation pressure of water vapor

RC  – equivalent resistance of electron transfer
RHa, RHc  – relative humidity of anode and cathode 

vapors
Ri  – ranking value of the ith individual
RM  – equivalent resistance of membrane to 

proton movement
r1, r2, r3, r4, r5 – Random numbers
T  – temperature
Vact – activation overvoltage
Vcell – output voltage

Vcon  – concentration overvoltage
Vohmic  – ohmic overvoltage
Vstack – voltage of stack

Greek symbols

λ – parameter related to gas humidity of the
membrane

ξ1, ξ2, ξ3, ξ4, – semi-empirical coefficients
ρM  – resistivity of electron flow

Subscripts

a – anode
act  – activation 
c – cathode
con  – concentration
M  – membrane 
mea  – measured
max  – maximum
STD  – standard

Superscript

sat  – saturation
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