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With the development of computer technologies and battery systems, mobile robot
systems have gained an important place in our lives. The Li-ion batteries, which
attract attention for portable applications due to their high power output, light
weight, and no memory effect, must operate in a limited temperature range in order
to operate safely and for a long application life. This case makes it necessary to
use battery thermal control systems that will provide temperature control for Li-ion
battery applications. Within the scope of our study, Li-ion battery thermal manage-
ment systems were investigated in detail. A detailed literature review was carried
out on air thermal management systems, with their application and systemic con-
venience. Due to restricted packaging space for battery in mobile robots, cooling
will be more challenging in the future. The air thermal management system, which
has limited thermal management capability due to the low thermal properties of
the air, is a thermal management method that will be sufficient especially for low
scale applications.

Key words: Li-ion battery, battery cooling, air temperature control,
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Introduction

Autonomous mobile robots that reduce manpower in the industry and increase sys-
tem efficiency have attracted significant attention from the production industry, with the de-
velopment of computer and software technologies and the Industry 4.0 industrial revolution
[1, 2]. Autonomous mobile robots have become tools used in many operations of the produc-
tion industry today, including production-lines and storage processes [3-5]. Each component
of robot systems consist of many mechanical and electrical systems has an ideal operating
temperature [6]. Thermal management for each of these components is very important for both
itself and for their interactions with each other [7].

The temperature control of Li-ion battery power generation systems, which is widely
preferred in mobile robot systems, is of vital importance for battery systems to operate safely
and efficiently in the required cycle life [8]. The electrochemical reaction during the battery
charge-discharge process creates reaction heat and joules heat due to ohmic resistances during
ion transfer, and this state causes the battery temperature to increase exponentially during op-
eration if cooling is not performed during battery operation [9]. It is recommended that battery
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systems operate in the 15-35 °C operating temperature range, with the maximum temperature
difference not exceeding 5 °C. In case the battery operated outside these temperature ranges,
irreversible damage may occur to the battery. For this reason, various active or passive thermal
management systems are used to to keep battery temperature under control.

Battery heat generation processes are difficult to understand, due to the difficulty
of knowing how the electric current is distributed in the battery and variation of battery elec-
trochemical reaction rate with time and temperature [10]. In order to carry out the cooling
system design and optimization studies in a rational way, a good understanding of the bat-
tery heat generation processes is required. For this reason, many studies have been carried
out on the electrochemical modelling of battery heat generation processes depending on the
battery charge discharge rate and battery operating temperature [9-11]. Wu [9] studied tem-
perature distribution and heat transfer models for simulate the temperature distribution. Kwon
and Park [12] carried out numerical simulations to measure the amount for battery degradation
and thermal runaway of battery operating wide temperature range. Tang et al. [13] noted that
the heat generation on the battery surface is uneven, that the temperature is not homogeneously
distributed on the battery surface and a higher amount of heat build-up in areas close to the cell
current collection ports. It is not possible to achieve battery temperature distribution homoge-
neity and this case creates an important constraint for thermal management. It was concluded
that the battery heat generation and heat generation inhomogeneity increased as the discharge
rate increased, and the ambient temperature had little effect on the average heat generation rate.

Mobile robot systems consist battery power generation systems and with it associated
of many electronic components and devices. Battery thermal control is not only for the safe and
efficient operation of the battery, it is also necessary for the safety and efficient operation of af-
fected by battery temperature systems and devices working in connection with the battery [4-7].

Air and liquid thermal management systems are predominantly preferred methods
for battery temperature control. The air thermal management system, which is the subject of
this study, a simple, low weight, leak free air thermal management system that uses air-flow to
remove battery heat is the oldest preferred thermal management method for controlling battery
temperature. It is not suitable to be used alone in extreme conditions and high power batteries,
because of the low heat transfer ability of the air and low thermal management ability.

In our study, a detailed literature summary about air thermal management system, one
of the basic battery thermal management systems, was prepared. It was observed that the stud-
ies focused on design optimization and design proposal. Due to it would be quite expensive and
complex for studies to proceed only through experimental studies, it was seen that the studies
were mainly carried out as numerical analysis and experimental verification.

Battery thermal management systems

Operation of battery systems outside the lower and upper operating temperature limits
seriously battery capacity and service life deterioration, and even in consequence of thermal
leaks such as combustion and explosion, it creates irreversible safety problems [14-18]. Ther-
mal management systems are required to heat or cool the battery depending on the operating
and ambient conditions of the battery system for the battery to meet the required performance
and service life [17, 19].

Air therrnal managermnent system

It is a thermal management method of controlling the temperature of the battery by
natural air convection or forced air convection by the fan [19]. Although natural-convection
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usually does not provide adequate thermal control, it may be adequate for thermal management
at low discharge rates. Zhang et al. [20] studied the thermal control by natural air convection
of a battery pack consisting of nine cells placed in various lay-outs. From straight row, square
and circular placed lay-out battery packs, the straight row were obtained lower battery tem-
perature in natural air convection, and then with square and cylindrical lay-out, respectively.
Then, the effect of the distance between the batteries on the thermal properties of the battery
pack was examined, it was seen that increasing the distance between the battery cells decreased
the maximum temperature and the maximum temperature. However, it should not be forgotten
that improves the thermal properties with increasing the distance between the batteries, but it is
not a desirable situation, as increasing the distance between the battery cells will increase the
battery pack volume. Yu et al. [21] observed the necessity of using a forced air battery thermal
management system for battery pack safety at higher discharge rates, although the system ther-
mal properties can be kept within the desired range at discharge rates as low as 0.5C in natural
air cooling for the battery scheme in which they work.

Considering the studies with natural air convection and their results, it can be conclud-
ed that the forced air cooled air thermal management system provides a more reliable thermal
control than the natural air convection thermal management system. In air thermal management
system studies, researchers mainly focused on forced air convection air thermal management
and focused on flow system modelling and flow system optimization [19, 22]. In flow system
modelling and optimization studies various focal points were focused on. These, the cell ar-
rangement in the battery pack, the cooling air inlet and outlet positions are design initiatives that
will change the flow characteristics.

In so far as the flow path and characteristics of the batteries change depending on
the arrangement of the cells in the battery pack, depending on the cell lay-outs, the thermal
management capability of the battery pack varies. In the study of Fan et a/. [23] examined the
effects on thermal management efficiency of 32 cylindrical battery cells are arranged in a stag-
gered and cross layouds of cells aligned in the battery pack, see fig. 1. The battery pack with
the aligned cell arrangement was found to provide the best thermal performance. Following the
aligned cell lay-out the most efficient cell arrays are staggered, diagonal, respectively. Aligned
battery pack arrangement for thermal management required up to by 2% lower fan power con-
sumption than cross arrangement. The most important factor for thermal management is the
number of cells in the module, beyond cell arrangement and flow rate.

Airflow (¢ ' Airflow l. Airflow  +§- l
- I S S " — .-{"_ | -
> B i il gy X
. S [+ — 5 [ —*75 5 L

=y oM < I
E = ST | e |
" = —e = —=D_ | —
- D' - * B— o : -
i A 3 AR IR i T s S -
(a) (b) ()

Figure 1. Staggered and cross cell layouds [23]; (a) aligned arrangement,
(b) staggered arrangement, and (c) cross arrangement

Since the cooling air-flowing in the battery pack absorbs the heat of the battery cells,
the ability of the air to absorb heat decreases, battery temperatures increase in the direction of
cooling air-flowing, higher temperatures occur in the battery pack output cells. To prevent this
situation, by making design modifications to the air inlet section in order to improve the cooling
efficiency and temperature homogeneity of the battery pack, Shahid and Agelin-Chaab [24] de-
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signed a system, where the cell temperatures are higher that will provide fresh air supply to the
outlet cells. With this design initiative, which provides fresh air supply to the outlet cells, 18.3%
lower maximum temperature and 54.6% lower temperature difference were achieved. Na et al.
[25] designed a battery pack that provides reverse air-flow between layers, in which the air-flow
area is bisected by a polyamine plate for lower the temperature of the battery output cells and to
increase the temperature uniformity of the battery pack. Due to the thermal interactions of the
reverse air-flow layers, lower maximum temperature and higher temperature uniformity were
achieved compared to the single-layer system. Similar to Na et al. [25] and Xu et al. [26] used
a design that divides the air-flow field into layers. Unlike the other study, the flow direction
was the same in the air-flow layers. At 2 m/s inlet air velocity, 3C discharge velocity, the sin-
gle-layer design provided 5.15% less max temperature and 16.01% less maximum temperature
difference than the unlayered design.

In battery packs cooled by one-way air-flow, another method used for to prevent of
increase the output cells to higher temperatures and the decrease in the temperature homogene-
ity of the battery pack, has been the design of a system that allows the air-flow to flow back and
forth in a certain period with valves that open and close at certain intervals. Mahamud and Park
[27] designed and suggested a system that will provide forward-backward air-flow in a certain
period, the schematic representation of which is given in fig. 2. It was stated that the shorter the
forward-backward air-flow time, the lower the temperature difference and the maximum tem-
perature. The maximum temperature difference and the maximum temperature decreased by
10 °C and 1.5 °C, respectively, compared to unidirectional air-flow with a back-and-forth air-
flow period of 120 seconds. Wang and Ma [28] examined the strategies of unidirectional cool-
ing, reciprocating cooling with constant period reciprocating air-flow, and active-controlled re-
ciprocating cooling in their study. With reciprocating air cooling, the battery pack temperature
uniformity was significantly improved. With the active control, the cooling power consumption
for required cooling has been significantly reduced.
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Figure 2. Reciprocating air cooling that provides forward-backward air-flow [27];
(a) flow direction from right to left and (b) flow direction from left to right

Lu et al. [29], who did not use the conventional battery module lay-out, created a
battery module by being fixed on plates with ventilation holes in six rows of 252 cells, and the
way of providing battery temperature control with axial air-flow was followed. In the analyzes
carried out, investigated the effects on thermal management of duct size and number of ducts to
allow cooling air to flow between battery packs. It was stated that increasing the channel size
would not be an effective way to increase the thermal management efficiency, and increasing
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the number of channels was more effective. In another study using a battery module with a sim-
ilar battery module lay-out as Yang et al. [30] studied the cooling of battery cells by axial air-
flow, evaluating the effects of inter-cell radial spacing and cooling air-flow rate. Increasing the
radial spacing of the battery pack slightly increases the battery pack average temperature while
improving temperature uniformity. In addition, increasing the radial spacing of the cells from
2-10 mm reduced the cooling system parasitic power losses by 95.5%. Increasing the cooling
system air-flow rate reduces the battery pack’s maximum temperature and minimum tempera-
ture, while also improving the temperature uniformity within the battery pack, as it reduces the
maximum temperature more than the minimum. Yang et al. [31] propose placing radiators with
bionic surface structure to the battery surfaces to increase the heat transfer area to improve the
thermal management of the battery pack consisting of cylindrical cells cooled by axial air-flow.
It has been reported that the increase in bionic surface thickness and height effectively reduces
the maximum temperature and maximum temperature difference, and the bionic surface shape
affects the maximum temperature and maximum temperature difference at a negligible level.

Cooling air inlet and outlet location has been another research topic due to it affects
the air-flow path and characteristics, thermal characteristic and thermal management efficiency
of the battery module [32-35]. Li ef al. [34] compared thermal kontrol effect of the fan posi-
tions. In terms of thermal performance, the fan on the back of the battery is more advantageous
than on the side of the battery was reported. The reason for this is that in the design where the
fan is positioned on the side surface of the battery, the heat transfer efficiency and thermal ho-
mogeneity are low, since the cooling air continues to heat up inside the battery pack. It has been
reported that increasing the fan position and number to increase the effective heat transfer arca
will increase the thermal management capability. Battery holders have been ignored in studies
examining the effects of fan position on thermal management.

Controlling the battery temperature with cooling air-flowing in the tangential direction
has been one investigation subject in air thermal management systems. The tangential air-flow
is sent to the battery pack cells placed at regular intervals, the cooling air is distributed tangen-
tially to the intercellular channels and leaves the battery pack at varying positions depending on
the tangential blower type. Depending on whether the air-flow directions are different or in the
same direction, tangential air blower thermal management systems are called u-type and z-type
tangential air blowers, respectively.

In the study of Li et al. [35] optimized the mass-flow rate and intercellular flow
channel size for the U-type tangential air-cooled thermal management system. When the in-
ter-cell flow channels of the battery pack are too wide, almost all of the flow will flow from
the front flow channels of the battery pack, and the cooling air-flow will not flow to the back
flow channels, this case causes a higher maximum temperature in the back cells and a higher
temperature difference in the battery pack. Xie et al. [36] evaluated the cooling air inlet-outlet
nozzle angles and made optimizations in U-type tangential air blower thermal management.
It was determined that the optimum inlet and outlet nozzle angle was 2.5°, and the maximum
temperature and temperature difference were reduced by 12.82% and 29.72%, respectively.
Gocmen and Cetkin [37] used the elevated battery position improve the thermal management
performance of the thermal management system in the Z-type tangential blower system oper-
ating at fast and ultra-fast discharge rates. With the elevated battery positions, the cooling air
showed uniform flow resistance and velocity. Thanks to this design, the maximum tempera-
ture between cells has been reduced from 12-0.3 K. A fin was added to the thermal manage-
ment design to increase the uniformity of intercellular temperature, electrical resistance, and
aging rate above 6C discharge rates.
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Summary information about many more studies is given in tab. 1. Fan et al. [60]
evaluated the use of unequal channel spacing to improve temperature uniformity, as the cooling
channel size increases between the cells at constant cooling air-flow rate, the maximum tem-
perature difference decreases, the maximum temperature increases. It was stated that unequal
channel spacing did not have a significant effect on improving temperature uniformity, that it
has an lowering effect on maximum temperature. Li e al. [61] suggested using regionally dif-

-
Outlet-r

ferent intercellular channel widths.
Zhang et al. [62] intercellular duct and cooling air inlet manifold evaluated to addi-
tion of flow diverter for to enhance the thermal management capability of the Z-type tangential
blown air thermal management system. Research results showed that it effectively improves
thermal management performance by increasing flow homogeneity of the addition of a flow
diverter to the air distributor manifold and flow channels.

The U-type and Z-type tangential blower air thermal management systems create similar
temperature distributions in opposite regions of the battery pack. The use of secondary vent is one of
the preferred design initiatives in order to improve the maximum temperature and temperature homo-
geneity of U-type and Z-type tangential air discharge thermal management systems. Hong et al. [66]

Outlet-1 Outlet3 Outlet5 Outlet7 Outlet9 Outlet-11 Outlet-13 evaluated the use of secondary vents
- - - - - - . - - - 4 - - to increase cooling efficiency. The
Outlet-2 Outlet-4 Outlet-6 Outlet-8 Outlet-10 Outlet-12 * diagram of the secondary vent loca-
tions evaluated in fig. 3. is given.
I I I I Among the secondary vents, both the
best thermal management efficiency
and the lowest pumping power loss
» were achieved with the outlet — 7,
which is the vent at the furthest point
Figure 3. Using of secondary vent [66] from the cooling air outlet location.

Metal foams have become a preferred material for the development of heat transfer
and flow processes in recent years, thanks to their advantageous geometries. Metal foam struc-
ture is also a preferred material in battery thermal management system design development
studies [68-70] used a thermal air thermal management design with an aluminum foam-based
heat exchanger. Giuliano et al. [68] used a thermal air thermal management design with an
aluminum foam-based heat exchanger. Wang et al. [70] studied the effects of metal foam po-
rosity and pore density on thermal management capability for a system using metal foam in
the battery pack flow field. Wang et al. [70] stated that aluminum foam heat sink is used in
thermal management system provides 30% lower average max temperature than without matal
foam thermal management system, at the expense of pumping power losses. Removal of metal
foam mass in certain areas of the heat sink reduced pumping power requirements by reducing
pressure losses, improved temperature homogeneity significantly.

We have mentioned before, that use of air as the cooling fluid has limited thermal
management performance due to the low specific heat capacity of the air. Saw et al. [74] pro-
posed a highly original and remarkable design for the air thermal management system. It used
mist air containing water droplets for battery thermal management. Using dry and mist air was
compared experimentally and numerically. As a result of the research was determined that the
system using mist cooling air provided better performance with maximum temperature drop
and temperature uniformity. The reason for the decrease of the maximum temperature battery
and the improvement of the thermal homogeneity battery is the evaporation of water droplets in
mist air by absorbing the heat produced in the battery.
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Conclusions

Mobile robot systems have taken an important place with the development of battery
power generation systems and computer systems in our lives. Temperature control is the big-
gest handicap of Li-ion battery power generation systems in order to operate safely within the
required power, lifetime.

When the battery thermal management studies were examined, it was determined that
the studies were mainly carried out on automotive applications, although real systems work
with a lot of cells or battery module, almost all of the studies have been worked on a battery
module or pack consisting of one or very few cells. Considering these situations, related studies
should be interpreted for robot applications.

Thermal management studies were conducted on design proposition, design develop-
ment and design optimization. The studies were mainly carried out as numerical simulation and
experimental verification due to the long and costly experimental work. The results obtained in
the studies are as follows.

e Regardless of the thermal management method, the thermal management of cylindrical
cells is more efficient than prismatic cells due to their geometry. The uniformity of the
thermal capacities of the battery pack cells increases the temperature homogeneity of
the battery pack. In case of charge and discharge under the same conditions, thermal
management loads are unequal, more heat is produced in the charging state than in the
discharge.

e At medium and high charge-discharge loads, the use of without forced convection air con-
vection for thermal management of the battery packet is insufficient in most cases. Thermal
management performance is highly dependent on the placement of the cells in the battery
pack. The battery pack array, which will reduce the interaction of the cells with each other as
much as possible, provides better thermal management performance for air thermal thermal
management without forced convection.

e Although forced air convection provides higher thermal management performance than
non-forced convection, it is not a method that provides effective thermal management
in all conditions. As with the without convection air thermal management system, the
arrangement and arrangement of the batteries within the battery pack has an impact on
thermal management performance. For forced convection air thermal management, the
aligned arrays of cells in axial symmetry in the battery pack provide more effective ther-
mal management performance. Another important consideration for a forced convection
air thermal management system is the flow path of the cooling air through the battery
pack. The cooling air progresses by losing its cooling efficiency due to the effect of heat
gain and friction factor during the flow. For effective thermal management, the cooling
air must be distributed homogeneously inside the battery pack and its travel distance must
be short.

® In order to obtain a homogeneous temperature distribution in the battery pack, the cooling
air must be homogeneously distributed in the battery pack. In the studies for this situation,
using conical air inlet and outlet nozzles, adding a flow deflector to the battery pack and
adding a secondary ventilation hole were the ways followed.
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