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The gas path analysis, which can quantify the performance degradation of gas 
turbine components, has been extensively applied to the gas path diagnosis. 
However, the precondition of this method is that the number of measurable pa-
rameters for the gas turbine to be diagnosed should not be less than the number 
of its health factors. In the existing research, this precondition can be guaranteed 
through common approaches such as screening the degraded components by a 
model-based prediagnosis process or recognizing the degraded components by 
using tools such as an ANN or a support vector machine. However, the diagnosis 
speed, recognition accuracy, and robustness of these approaches need to be im-
proved. Therefore, a diagnosis method fusing the gas path performance analysis 
model and the extreme learning machine was proposed in this paper and applied 
to a GE LM2500+SAC gas turbine. The working mechanism of similarity rank-
ing-gas path diagnosis-rationality check was introduced in the fusion method, 
endowing it with a higher recognition accuracy rate, stronger robustness, and 
higher diagnostic accuracy.
Key words: gas turbine, performance degradation, gas path diagnosis, 

 extreme learning machine, pattern recognition, smearing effect

Introduction

Gas turbines have been widely used in numerous fields such as aviation, ship, and 
electric power because of their high efficiency, high unit power, and long service life. Espe-
cially when applied to natural gas pipe-lines, gas turbine-driven compressor sets, which can 
considerably reduce the local power grid load, are the preferred equipment in areas with under-
developed electric power supply.

The main gas path components of a gas turbine work under environments with high 
temperatures, high pressures, high rotation speeds, and large flow quantities. Fouling, corro-
sion, wear, and ablation, among other factors, will unavoidably appear on the compressor blade 
or the turbine blade as a result of the unfiltered dust in the atmosphere, the corrosive compo-
nents in the combustion products, the friction between the blades and cavity, and the carbon 
deposition formed on the nozzle of the combustion chamber (CC) [1]. These problems will 
result in degrading thermal efficiency and declining output power of the gas turbine [1, 2], or, 
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even worse, lead to unexpected halts and component damage. Therefore, the key to the safe, 
steady, and efficient operation of gas turbines lies in the timely and accurate mastering of the 
health conditions of each component. This is also of great importance for formulating a reason-
able maintenance and repair plan and the advance purchase of spare parts [3].

Since being proposed by Urban [4] in 1973, gas path analysis (GPA) – a gas turbine 
diagnosis method based on the thermodynamic model – has been fully developed and exten-
sively applied [3]. For both the linear and non-linear diagnosis methods [4-7], a necessary 
condition for obtaining unique solutions of diagnosis equations is that the number of gas path 
measurable parameters should be greater than or equal to that of the components’ health factors. 
Otherwise, nearly all components will be diagnosed with gas path performance degradation, 
referred to as the smearing effect [3, 8].

The methods to avoid the smearing effect can be roughly divided into two categories. 
The first category addresses gas path diagnosis based on a thermodynamic model: by increasing 
the number of governing equations based on prior information, or by reducing the number of 
undetermined health factors through a screening process, the diagnosis equations will have a 
unique solution. The second category recognizes the components within the performance deg-
radation by using a pattern recognition tool. Therefore, a qualitative diagnosis can be realized 
without solving the diagnosis equations.

Previous researchers have widely explored these two categories. Stamatis et al. [9] 
put forward the discrete operating conditions gas path analysis (DOCGPA), expanding the di-
mension of diagnosis equations using gas path measurable parameters under multiple operating 
points to acquire unique solutions. Mathioudakis et al. [10] proposed a non-linear-model-based 
method for tracking components’ performance degradation: while determining the deviation 
direction of components’ health factors, their diagnosed values at previous instance were de-
termined as the best guesses of the present moment because the performance degradation of 
components was a slow process. Aretakis et al. [11] and Macthioudakis et al. [12] introduced 
a model-based prediagnosis process before performing the quantitative diagnosis. This pro-
cess aimed to screen for the components that were significantly degraded. In both papers, the 
concept of diagnosis index was introduced, and it quantified the screening basis. However, the 
real-time feature of these methods was sacrificed as a result of the numerous invocations of the 
diagnosis model. Borguet et al. [13] proposed a constrained least square method for fault isola-
tion. In this method, prior information about the health parameters was derived in the form of 
constraints. Thus, the isolation capability of the traditional least-squares-based methods could 
be improved. Nevertheless, this prior information, usually obtained based on the experience of 
technicians, may not be universal for gas turbines applied to different places with different gas 
path structures.

In the recent three decades, pattern recognition has been widely applied in various 
industries. Many approaches primarily represented by the ANN and support vector machine 
(SVM) have provided an alternative for gas path diagnosis because of their outstanding noise 
immunity and high computation speed that can be achieved without solving any diagnosis 
equations.

The back-propagation neural network (BPNN) was applied to gas path diagnosis as 
early as 1996 [14]. Thereafter, Lu et al. [15] introduced the auto-associative neural network to 
reduce measurement noise, improving the success rate of BPNN-based fault diagnosis. In 2009, 
Matuck et al. [16] studied the fault recognition effect of the multilayer perceptron neural network 
and achieved a success rate higher than 97%. In the same year, Fast et al. [17] explored the quan-
titative prediction ability of ANN, the results demonstrating that the prediction error of measur-
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able parameters could be lower than 1%. Thus, Fast et al. [17] indicated that the ANN can be used 
for gas path performance simulation, condition monitoring, or sensor validation. In 2012, Barad  
et al. [18] adopted a two-hidden-layer ANN to simultaneously monitor the performance and 
mechanical health of a power turbine (PT). These encouraging results can be obtained in not 
only a steady-state but transient state.

In terms of SVM-based methods, Zhou et al. [19] proposed a stepwise recognition 
idea in 2015, making it possible to accurately recognize degradation characteristic samples 
after repeated binary classification. Additionally, the comparison results indicated that SVM 
can acquire a higher recognition rate when the radial basis function is selected as the kernel 
function. Huang et al. [20] combined the simulated annealing algorithm with GA to optimize 
the penalty factor and kernel function parameter in SVM, thus improving the recognition rate. 
Butler et al. [21] and Lan et al. [22] compared the effects of using different pattern recognition 
tools, and their results indicated that different tools show their respective recognition preferenc-
es. Hence, an effective way to improve the recognition rate lies in fusing the results different 
pattern recognition tools obtain.

Although they present numerous advantages, pattern recognition-based methods 
also have defects. For instance, it is difficult to collect gas turbine operating data under 
typical degradation patterns. Therefore, the data used to train the pattern recognition tools 
generally derive from simulation models, thus unavoidably leading to a negative impact on 
the training effect.

In this paper, a gas path diagnosis method fusing the extreme learning machine (ELM) 
and performance analysis models (simulation model and diagnosis model included) is proposed 
to eliminate the smearing effect in diagnosis results and guarantee the real-time feature of the 
diagnosis process. This method has three core steps: first, similarity ranking is conducted be-
tween the degradation characteristic samples and all the degradation patterns using ELM. Next, 
the undetermined health factors under a minority of degradation patterns with high similarity 
are qualified using the diagnosis model. Finally, 
only the diagnosis result meeting the criteria of ra-
tionality is accepted and output. 

Basic theory of ELM

Proposed by Huang [23], ELM is a sin-
gle-hidden-layer feed-forward neural network. 
Studies have shown that ELM has a high learning 
rate and strong generalization ability [24]. Figure 
1 shows its typical topological structure. 

For a given dataset (xi, ti), i = 1,..., N, where 
xi = [xi,1, xi,2,...xi,n]T ∈ Rn

 and ti = [0, 0,...1,...0]T  
∈ Rm the output of ELM can be defined as:

( ) ( )
1 1

, 1, 2,
l l

i j i i j i j
i i

g g b j N
= =

= + = =∑ ∑x w x t β β (1)

where l is the number of hidden-layer neurons, wi = [wi,1, wi,2,... wi,n]T , bi, and  
βi = [β i,1, β i,2,... β i,m]T are the input weight vector, bias, and output weight vector of the ith hid-
den-layer neuron, respectively, wixj – the inner product of wi and xj, and g(x) – the kernel func-
tion. Usually, the sigmoid function, radial basis function, or polynomial function is selected to 
enhance the non-linear mapping ability of ELM.

Figure 1. Topological structure of ELM
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Equation (1) can be transformed into a matrix form:
( ), =H w b Tβ (2)

where H is the output matrix of the hidden layer, β – the output weight matrix of the hidden 
layer, and T – the expected output.

In eq. (2), H(w, b) is uniquely identified because w and b are randomly determined. 
Thus, the optimization process of β can be further transformed into solving the linear equations:

†= H Tβ (3)

where H† is the Moore-Penrose generalized inverse of matrix H.
As a feed-forward neural network, ELM has a better generalization performance if 

the norm of β is smaller while a smaller training error is reached [25], respectively, the cost 
function under constrained conditions can be expressed:

2 2 T
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1 1 , s.t. : ( ) , 1,...
2 2

N
T

i i i i
i

L C i Nξ
=

= + = − =∑ h x tβ β ξ (4)

where ξi
T= [ξi,1,... ξi,m]T represents the error vector of the ith training sample on m output nodes, 

h(xi) is the output vector of the hidden layer when the sample xi is input.
Based on the KKT theorem, the solving process of eq. (4) is equivalent to solving the 

dual optimization problem and its solving process references [24]:

( ) ( )( )2 2 *
D , , ,

1 1 1

1 1min min
2 2

N N m

i i j i j i j i j
i i j

L C tα ξ
= = =

 
= + − − + 

 
∑ ∑∑ h xβ ξ β (5)

where αi,j is the Lagrange multiplier, β*
j = [β1,j, β2,j,... βi,j,]T – the weight vector from the hidden 

layer to the output node j (β*
j is the transposed matrix of β), and C represents a penalty factor.

Equation (6) provides the output equation of the ELM classifier in the case where the 
number of training samples is much greater than the dimension of feature space:

( ) ( ) ( )
1

T T

C

−
 = = + 
 

If x h x h x H H H Tβ (6)

Finally, a given test sample belongs to the pattern corresponding to the output neuron 
with the maximum value.

Fusion method

New application of pattern recognition tools

As mentioned, the test samples were classified by ELM based on the principle of 
maximum value: the higher the value of an output-layer neuron, the higher the similarity of the 
sample to the corresponding pattern of this neuron, and vice versa. However, if a sample was 
simultaneously adjacent to the regions corresponding to multiple patterns in the vector space, 
or if the regions of such patterns were overlapping, this sample was considered highly similar 
to all these patterns. Therefore, the actual pattern of this sample might not correspond to the 
output-layer neuron with the maximum value.

The aforementioned case still held true in the pattern recognition of gas turbine per-
formance degradation. As fig. 2 shows, where two falsely recognized degradation characteristic 
samples were taken, the value of each output-layer neuron was provided by ELM. Furthermore, 
considering that such false recognition results were not exclusive to ELM, the results given by 
the BPNN are also displayed in the figure.



Li, S., et al.: Gas Path Diagnosis Method for Gas Turbine Fusing ... 
THERMAL SCIENCE: Year 2023, Vol. 27, No. 5A, pp. 3537-3550 3541

Figure 2. Values of output-layer neurons in BPNN and ELM  
for the same characteristic samples

As fig. 2(a) shows, among the recognition results provided by ELM, the degradation 
characteristic sample was highly similar to the 13th, 11th, 6th, and 10th degradation patterns. Re-
garding the recognition results of BPNN, the sample was of high similarity to the 13th and 11th 
degradation patterns. This sample belonged to the 11th degradation pattern, which, however, the 
two recognition tools mistakenly classified as the 13th pattern based on the principle of maxi-
mum value. Similarly, both ELM and BPNN mistakenly classified the 14th pattern as the 11th 
pattern, as fig. 2(b) shows.

Although both recognition tools provided incorrect results, the degradation charac-
teristic sample showed high similarity to the actual degradation pattern, indicating that ELM 
and BPNN can be used as similarity ranking tools. Furthermore, ELM is a more appropriate 
alternative because it is of extremely fast learning speed and its output result more compre-
hensively embodies the similarity between the degradation characteristic sample and multiple 
degradation patterns.

Diagnosis process

The gas path diagnosis based on the fusion method took advantage of the fast similar-
ity ranking of ELM and the accurate quantitative diagnosis of performance analysis models. By 
combining fig. 3, the complete diagnosis process could be divided into three-stages:

Train ELM. In this stage, the simulation model was used to generate the gas path 
measurable parameters of a gas turbine in a healthy status and those under multiple typical deg-
radation patterns. On this basis, the degradation characteristic samples were extracted through 
eq. (7). Next, these samples and their patterns were utilized to construct a sample library and 
train ELM:

Deg Healthy

Healthy

MP MPDC
MP
−

= (7)

where MP¯¯Healthy and MP¯  ̄ Deg represent the gas path measurable parameters when the gas turbine 
was in the healthy status and a degradation status, respectively, DC is the degradation charac-
teristic sample.

 Extract the degradation characteristic sample of the practical gas turbine. In this 
stage, the actual operating data of the gas turbine to be diagnosed were collected, from which 
the extracted atmospheric parameters and operating condition parameters were input into the 
simulation model. After the gas path measurable parameters under the healthy status were ac-
quired through simulation, the practical degradation characteristic sample could be similarly 
obtained using eq. (7).
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Figure 3. Flowchart of fusion method

Perform a quantitative diagnosis and verify the rationality of the results. As a core 
stage of the fusion method, this stage can be subdivided into three steps. Step-1 was pattern 
similarity ranking: the degradation characteristic sample was input into the trained ELM to 
acquire the similarity ranking among all degradation patterns. Step-2 was gas path diagnosis: 
the health factors corresponding to the degradation pattern with the highest similarity were set 
as the undetermined health factors, followed by a quantitative calculation using the diagnosis 
model. Step-3 was a rationality check: If the diagnosis result met all the rationality criteria, the 
calculated value of the undetermined health factors was accepted and output, and the diagnosis 
process was ended. Otherwise, the corresponding undetermined health factors would be calcu-
lated under the other high similarity degradation patterns according to the similarity ranking 
provided in Step-1 until a result meeting all the rationality criteria was acquired, or the maxi-
mum number of attempts was reached.

Two rationality criteria were proposed for the fusion method. First, the root mean 
square error between the simulated values (provided by the diagnosis model) and the measured 
values should be lower than the error threshold δError. Second, the variation characteristic of the 
undetermined health factors should accord with that of the health factors under typical fault 
patterns [1, 2], as seen in tab. 1.

Table 1. Variation characteristics of health factors under typical fault patterns

Component Fault pattern Fault code Variation characteristic
CMF IE/CE

Compressor

Fouling F1 <1 <1
Erosion F2 ≈1 <1

Tip clearance F3 <1 ≈1
Foreign object damage F4 ≈1 <1

Combustion chamber Carbon deposition F5 ≈1 <1

Turbine
Erosion F6 >1 <1
Fouling F7 <1 <1

Foreign object damage F8 ≈1 <1
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Some undetermined health factors will be considered unchanged, that is, their vari-
ation characteristic belongs to ≈1 if their variation extent is lower than the healthy threshold 
δHealthy, which can avoid the adverse effect of measurement noise on the quantitative diagnosis 
and rationality check.

Application

The fusion method was applied to a GE LM2500+SAC gas turbine to verify its higher 
recognition rate and stronger robustness as well as its advantage in weakening the smearing ef-
fect. For comparison, the results acquired using three representative recognition tools – BPNN, 
SVM, and ELM – were also presented. In this section, the construction strategy of the degrada-
tion characteristic sample library, and the optimized hyper parameters in each recognition tool 
are provided.

Degradation characteristic sample library

The gas path structure and the sensor lay-out of GE LM2500+SAC gas turbine are 
shown in the Appendix, fig. A1. There were seven health factors, tab. 2, in total for this engine. 
However, the quantity of its measurable parameter used for gas path diagnosis was only six 
(except the atmospheric parameters, fuel temperature, and operating condition parameters). To 
obtain a unique solution to the diagnosis equations, it was assumed that the gas turbine only 
contained three components having performance degradation at most. Hence, there were four, 
six, and four single-, double-, and triple-component degradation patterns, respectively. After 
referring to the accepted empirical criteria [1, 2] and considering the common situations, the 
variation extent of each health factor under the aforementioned 14 degradation patterns was 
also provided in tab. 2.

Table 2. Variation of each health factor under different  
performance degradation patterns

Health factor
Variation extent

Single component Double components Triple components
HFHPC,CMF −0.01 ~ −0.07 −0.01 ~ −0.05 −0.01 ~ −0.03
HFHPC,IE −0.01 ~ −0.05 −0.01 ~ −0.04 −0.01 ~ −0.03
HFCC,CE −0.01 ~ −0.05 −0.01 ~ −0.04 −0.01 ~ −0.03

HFHPT,CMF, HFPT,CMF −0.06 ~ +0.06 −0.04 ~ +0.04 −0.03 ~ +0.03
HFHPT,IE, HFPT,IE −0.01 ~ −0.05 −0.01 ~ −0.03 −0.01 ~ −0.02

In addition, to ensure that simulation results approached the actual operating data, 
measurement noise was further added according to the accuracy of the gas path sensors. Unfor-
tunately, the accuracy of each sensor cannot be disclosed due to it is the property of GE. In the 
follow-up generation of characteristic samples under each degradation pattern, the measurable 
parameters were denoised by 10-point averaging.

On this basis, a sample library can be constructed. Furthermore, the sample library 
was divided into three parts: a training set (Tr-1), a validation set (Va-1), and a test set (Te-1). 
In each set, the operating condition and degradation extent of the corresponding samples were 
uniformly distributed.
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Hyper parameter setting

The hidden neuron number affected the recognition rate of BPNN and ELM. For 
ELM and SVM with kernel, their experiential risk and structural risk could be changed under 
the varying hyper parameters. Hence, these parameters should be optimized by focusing on the 
recognition rate of the validation set, which will allow for the best performance of recognition 
tools. Due to space constraints, the optimized results were given only. The neuron number was 
set as 20 and 600 for BPNN and ELM, respectively. Additionally, C = 1024 and σ = 0.0156 were 
set for ELM, and C = 512 and σ = 2 for SVM.

In the fusion method, the number of hidden-layer neurons, penalty factor C, and ker-
nel parameter σ were identical to those in the case where it was used as the pattern recognition 
tool. During the quantitative diagnosis process (Stage-3), the maximum number of attempts 
was set as 3, and error threshold δError and healthy threshold δHealthy were set as 0.005 and 0.003, 
respectively.

Results and analysis

Recognition effect

The different diagnosis methods were evaluated based on the test set Te-1. Table 3 
lists the comparison results. The fusion method exhibited high capability with a false recog-
nition rate of about 5.5%, 1.9%, and 0.64% under the single-, double- and triple-component 
degradation patterns, respectively.

Table 3. False recognition rates of BPNN, ELM, SVM, and fusion method

Degradation
pattern

False recognition rate
False recognition type

BPNN ELM SVM Fusion method
Single-component 19.6% 37.3% 13.1% 5.45% Mostly belong to  

inclusion typeDouble-component 8.03% 24.7% 7.51% 1.91%
Triple-component 4.01% 4.09% 4.01% 0.64% All belong to omission type

Total 8.17% 14.3% 7.08% 1.95%

From tab. 3, the falsely recognized degradation patterns can be divided into two types: 
inclusion type or omission type. The former indicated that the recognized pattern not only con-
tained all the components with actual performance degradation but also included those with-
out performance degradation. Under this type, an accurate quantitative diagnosis result can be 
obtained if the diagnosis model was used. However, the latter was just the opposite and the 
acquired quantitative diagnosis result deviated significantly from the actual status of each com-
ponent. A lower proportion of omission-type false recognitions manifested a higher accuracy 
of the quantitative result. 

Robustness

The application effect of each diagnosis method was restricted by two factors: 
 – the simulation model generated the training samples, so they were not equivalent to the 

actual operating data of the gas turbine, making it difficult for the pattern recognition tool 
to be sufficiently trained and 

 – the hyper parameters influenced the recognition ability, but it took a long time to optimize 
them.
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Whether the negative impact the aforementioned restrictions caused could be weak-
ened was an important index to assess the robustness of the diagnosis method. In this section, 
the advantages of this fusion method are demonstrated in two cases.

In Case 1, the influence of the inequivalence between training samples and actual op-
erating data on the recognition rate was explored. First, the measurement noise of six gas path 
measurable parameters was increased by 50% and embedded into the simulated results. Next, 
the various parameters were denoised by ten point averaging, thus building the Tr-2 and Te-2 
with a higher noise level. Finally, Tr-1 and Tr-2 were used to train the BPNN, SVM, and ELM, 
and the recognition effect of each method was assessed using Te-1 and Te-2. The robustness 
of each was compared by taking the false recognition rate of the triple-component degradation 
patterns as an evaluation index, as fig. 4 shows.

As seen in fig. 4, when the same noise level was contained in both the training and 
test sets, the false recognition rates of the three tools were all about 4%. If a higher noise level 
was only added in the test set, their false recognition rates were elevated to about 5.5%. When 
a higher noise level was only added in the training set, their false recognition rates slightly 
declined to about 3.7%. The fusion method demonstrated the strongest robustness even under 
the harshest condition (Tr-1/Te-2), with a false recognition rate of only 1.5%. The comparison 
results revealed that the fusion method substantially weakens the negative influence of data 
inequivalence on the recognition effect.

In Case 2, the influence of improper hyper parameter settings on the recognition rate 
of each method was explored. First, the hyper parameters of ELM and SVM were set at some 
unreasonable values (C = 2, σ = 0.5). Then, each tool was trained using Tr-1 and assessed using 
Te-1, as fig. 5 shows.

 Figure 4. Noise influence on recognition 
effects of different methods

Figure 5. Influences of improper setting of 
hyper parameters on recognition effects of 
different methods

For ELM and SVM, the false recognition rate of the triple-component performance 
degradation patterns was increased from about 4-5.5% after the hyper parameters resetting. 
For the fusion method, however, the rate was just slightly elevated by about 0.16%. The results 
indicated that the recognition capability of this fusion method was insensitive to the value of 
hyper parameters.

Elimination of smearing effect

Benefiting from the higher recognition rate and stronger robustness, this fusion meth-
od had the advantage of eliminating the smearing effect.
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In fig. 6, double- and triple-component degradation patterns were taken to display the 
variation of health factors in the following cases: 
 – embedded values,
 – diagnostic values when the diagnosis equations were underdetermined, 
 – diagnostic values when the degradation pattern was falsely recognized, and 
 – diagnostic values based on the fusion method. 

As fig. 6(a) depicts, if the diagnosis equations were underdetermined under a dou-
ble-component degradation pattern (degraded components: CC and PT), all the components 
with degradation to a certain degree were considered. If a diagnosis was made under a falsely 
recognized degradation pattern (omission type), the decline of the CC combustion efficiency 
could not be found. 

As fig. 6(b) shows, under a triple-component degradation pattern (degraded compo-
nents: HPC, CC, and HPT), catastrophic impacts were brought to the quantitative diagnosis 
results if the diagnosis equations were underdetermined or if the degradation pattern was falsely 
recognized. To be specific, the decline of HPC flow capacity, the decrease of CC combustion 
efficiency, and the descent of HPT flow capacity were not effectively diagnosed. Furthermore, 
it was falsely considered that the PT flow capacity was increased. In striking contrast, the di-
agnosis results provided by the fusion method kept highly consistent with the actual situation.

Figure 6. Diagnostic value of health factors based on different methods

Analysis

The fusion method constructs a new working mechanism of similarity ranking – gas 
path diagnosis – rationality check, which is a determinant of its higher recognition rate, stronger 
robustness, and higher diagnostic accuracy. 

Specifically, the similarity ranking process narrows the search scope of degradation 
patterns. Therefore, the real-time feature of the complete process is ensured by reducing the 
number of tentative diagnoses. After each tentative diagnosis is completed, the assumed deg-
radation pattern is determined by checking the convergence of iteration and the variation char-
acteristic of the undetermined health factors. Hence, while improving the recognition rate, the 
fusion method also guarantees the accuracy of the follow-up quantitative diagnosis results.

To demonstrate the repeatability of the fusion method, data generated in the process 
of similarity ranking, gas path diagnosis, and rationality check of the cases shown in fig. 6 are 
listed in tabs. A1 and A2 in the Appendix. Furthermore, tab. A3 shows the environment param-
eters, fuel parameters, and engine health conditions of the two cases.
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Conclusions

In this paper, a gas turbine diagnosis method fusing ELM and the performance anal-
ysis model was presented. In the fusion method, ELM aims to rank the similarity between the 
degradation characteristic sample and all the degradation patterns. In the performance analysis 
models, the diagnosis model is used to quantify the corresponding undetermined health factors 
under a minority of highly similar degradation patterns. The quantification result can be output 
only when rationality is satisfied. This method was verified with an GE LM2500+SAC gas 
turbine, and the following conclusions are as follows.

 y Based on the working mechanism of similarity ranking – gas path diagnosis – rationality 
check, the fusion method can discover and correct the false result the pattern recognition 
tool provides.

 y The fusion method can inhibit the negative impacts generated by the improper hyper param-
eters setting and the inequivalence between training samples and actual operating data on 
pattern recognition.

 y Based on the higher recognition rate, the fusion method effectively eliminates the smearing ef-
fect, that is, the provided results can accurately reflect the health status of the actual gas turbine.

Nomenclature
C – penalty factor
HF – health factor

Greek letters

δ – threshold
σ – kernel parameter

Acronyms

ATM – atmosphere

C – combustion chamber
CE – combustion efficiency
CMF – corrected mass-flow
GG – gas generator
HPC – high pressure compressor
HPT – high pressure turbine
IE – isentropic efficiency
PT – power turbine

Appendix

Figure A1 shows the gas path structure and the lay-out of gas path sensors of GE 
LM2500+SAC. The six gas path measurable parameters used for diagnosis, were shown in red 
and bold text.

Figure A1. Gas path structure and the sensor lay-out of GE LM2500+SAC  
gas turbine (for color image see journal web site)

Corresponding to the diagnosis cases shown in fig. 6, tabs. A1 and A2 listed the data 
generated in Stage-3 (that is the step for similarity rank, gas path diagnosis, and rationality 
check) of this fusion method, respectively.
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Table A1. Data generated in Stage-3 of this fusion method in the diagnosis case shown in fig. 6(a)

Diagnosis
procedure

Procedure 
parameter

Gas path measurable parameters

THPC,Out pHPC,Out ṁFuel THPT,Out pHPT,Out TPT,Out

Extract the
degradation

characteristic
sample

MP¯¯ Deg 711.8 1.876 1.204 1013 387.4 764.2

MP¯¯ Healthy 712.9 1.885 1.199 1014 388.4 756.8

DC¯¯ −0.1555% −0.4678% +0.4231% −0.04262% −0.2630% +0.9693%

Diagnosis result of health factors

Similarity
rank

Degradation
pattern 1st: PT 2nd: CC + PT 3rd: HPC + CC + PT

Gas path
diagnosis

Undetermined
health factors

HFPT,CMF ≈ 1
HFPT,IE = 0.9796

HFCC,CE = 0.9915
HFPT,CMF ≈ 1

HFPT,IE = 0.9749
(Diagnosis is ended)

Rationality
check

Root mean 
square error 0.0067† × 0.0019 √ – –

Fault
code F8 √ F5+F8 √ – –

† The root mean square error exceeds the error threshold δError (δError = 0.005).

Table A2. Data generated in Stage-3 of this fusion method in the diagnosis case shown in fig. 6(b)

Diagnosis
procedure

Procedure 
parameter

Gas path measurable parameters

THPC,Out pHPC,Out ṁFuel THPT,Out pHPT,Out TPT,Out

Extract the
degradation

characteristic
sample

MP¯¯ Deg 753.0 221.0 1.571 1126 0.4505 818.2

MP¯¯ Healthy 742.8 216.9 1.490 1088 0.4486 789.7

DC¯¯ +1.380% +1.912% +5.410% +3.513% +0.4284% +3.611%

Diagnosis result of health factors

Similarity
rank

Degradation
pattern 1st: HPC + HPT + PT 2nd: HPC + CC + HPT 3rd : HPC + HPT

Gas path
diagnosis

Undetermined
health factors

HFHPC,CMF ≈ 1
HFHPC,IE = 0.9859

HFHPT,CMF = 0.9954
HFHPT,IE = 0.9829

HFPT,CMF = 1.0135††

HFPT,IE ≈ 1††

HFHPC,CMF = 0.9849
HFHPC,IE = 0.9861
HFCC,CE = 0.9871

HFHPT,CMF = 0.9815
HFHPT,IE = 0.9824

(Diagnosis is ended)

Rationality
check

Root mean 
square error 0.0013 √ 0.0009 √ – –

Fault
code Error × F1 + F5 

+ F7 √ – –

†† The variation characteristics of the two health factors do not agree with those of the health factors under typical fault patterns  
(shown in tab. 1).
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Table A3 provides the environment parameters, fuel parameters, and engine health 
conditions corresponding to the diagnosis cases shown in figs. 6(a) and 6(b).

Table A3. The preset parameters in the diagnosis cases shown in figs. 6(a) and (b)

Case
Fuel parameters, environmental parameters, and operating condition parameters

Fuel
parameters

Relative 
humidity TATM pATM THPC,In pHPC,In pPT,Out NGG NPT

fig. 6(a)
Composition:
CH4 (0.9506)
C2H6 (0.0413)
C3H8 (0.0081)

Temperature:
328 K

60 288.3 101.1 288.3 101.0 101.3 9299 6100
Engine health condition

HFHPC,CMF = 1, HFHPC,IE = 1, HFCC,CE = 0.99
HFHPT,CMF = 1, HFHPT,IE = 1, HFPT,CMF = 1, HFPT,IE = 0.975

fig. 6(b)

Relative 
humidity TATM pATM THPC,In pHPC,In pPT,Out NGG NPT

60 288.1 101.5 288.1 101.4 101.3 9501 6101
Engine health condition

HFHPC,CMF = 0.985, HFHPC,IE = 0.985, HFCC,CE = 0.987
HFHPT,CMF = 0.981, HFHPT,IE = 0.983, HFPT,CMF = 1, HFPT,IE = 1

Reference
[1] Mohammadi, E., Montazeri-Gh, M., Simulation of Full and Part-Load Performance Deterioration of In-

dustrial Two-Shaft Gas Turbine, Journal of Engineering for Gas Turbines and Power, 136 (2014), 9,  
pp. 092602-1-092602-9

[2] Yang, Q., et al, Full and Part-Load Performance Deterioration Analysis of Industrial Three-Shaft Gas 
Turbine Based on Genetic Algorithm, Proceedings, ASME Turbo Expo, Seoul, South Korea, 2016, Vol. 
6, pp. V006T05A016

[3] Volponi, A. J., Gas Turbine Engine Health Management: Past, Present, and Future Trends, Journal of 
Engineering for Gas Turbines and Power, 136 (2014), 5, pp. 051201-1-051201-20

[4] Urban, L. A., Gas Path Analysis Applied to Turbine Engine Condition Monitoring, Journal of Aircraft, 10 
(1973), 7, pp. 400-406

[5] Kamboukos, P., Mathioudakis, K., Comparison of Linear and Non-linear Gas Turbine Performance Diag-
nostics, Journal of Engineering for Gas Turbines and Power, 127 (2005), 1, pp. 49-56

[6] Stamatis, A., et al, Gas Turbine Component Fault Identification by Means of Adaptive Performance Mod-
elling, Proceedings, ASME International Gas Turbine and Aeroengine Congress and Exposition, Brus-
sels, Belgium, 1990, Vol. 5, pp. V005T15A015

[7] Li, Y. G., Non-Linear Weighted-Least-Squares Estimation Approach for Gas-Turbine Diagnostic Applica-
tions, Journal of Propulsion and Power, 27 (2011), 2, pp. 337-345

[8] Li, Y. G., Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis, 
Journal of Engineering for Gas Turbines and Power, 132 (2010), 4, pp. 041701-1-041701-9

[9] Stamatis, A., et al., Jet Engine Fault Detection with Discrete Operating Points Gas Path Analysis, Journal 
of Propulsion and Power, 7 (1991), 6, pp. 1043-1048

[10] Mathioudakis, K., et al., Turbofan Performance Deterioration Tracking Using Non-Linear Models and 
Optimization Techniques, Journal of Turbomachinery, 124 (2002), 4, pp. 580-587

[11] Aretakis, N., et al., Non-Linear Engine Component Fault Diagnosis From a Limited Number of Mea-
surements Using a Combinatorial Approach, Journal of Engineering for Gas Turbines and Power, 125 
(2003), 3, pp. 642-650

[12] Mathioudakis, K., et al., Gas Turbine Component Fault Detection from a Limited Number of Measure-
ments, Proceedings of the Institution of Mechanical Engineers – Part A: Journal of Power and Energy, 
218 (2004), 8, pp. 609-618

[13] Borguet, S., Leonard, O., Constrained Sparse Estimation for Improved Fault Isolation, Journal of Engi-
neering for Gas Turbines and Power, 133 (2011), 12, pp. 121602-1-121602-8

[14] Torella, G., Lombardo, G., Neural Networks for the Diagnostics of Gas Turbine Engines, Proceedings, 
ASME Turbo Asia Conference, Jakarta, Indonesia, 1996, pp. V001T03A006



Li, S., et al.: Gas Path Diagnosis Method for Gas Turbine Fusing ... 
3550 THERMAL SCIENCE: Year 2023, Vol. 27, No. 5A, pp. 3537-3550

[15] Lu, P., et al., An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks, Journal of 
Engineering for Gas Turbines and Power, 123 (2001), 2, pp. 340-346

[16] Matuck, G. R., et al., Multiple Faults Detection of Gas Turbine by MLP Neural Network, Proceedings, 
ASME Turbo Expo, Power for Land, Sea, and Air, Orlando, USA, 2009, Vol.1, pp. 697-703

[17] Fast, M., et al., Development and Multi-Utility of an ANN Model for an Industrial Gas Turbine, Applied 
Energy, 86 (2009), 1, pp. 9-17

[18] Barad, S. G., et al., Neural Network Approach for a Combined Performance and Mechanical Health Mon-
itoring of a Gas Turbine Engine, Mechanical Systems and Signal Processing, 27 (2012), Feb., pp. 729-742

[19] Zhou, D., et al., A New Gas Path Fault Diagnostic Method of Gas Turbine based on Support Vector 
Machine, Journal of Engineering for Gas Turbines and Power, 137 (2015), 10, pp. 102605-1-102605-6

[20] Huang, Q., et al., A Kind of Approach for Aero Engine Gas Path Fault Diagnosis, Proceedings, IEEE 
International Conference on Prognostics and Health Management, Dallas, Tex., USA, 2017, pp. 55-60

[21] Butler, S. W., et al., An Assessment Methodology for Data-Driven and Model-Based Techniques for En-
gine Health Monitoring, Proceedings, ASME Turbo Expo, Power for Land, Sea, and Air, Barcelona, 
Spain, 2006, pp. 823-831

[22] Lan, G., et al, Comparison and Fusion of Various Classification Methods Applied to Aero-Engine Fault 
Diagnosis, Proceedings, 29th Chinese Control and Decision Conference, Chongqing, China, 2017,  
pp. 4754-4759

[23] Huang, G. B., et al, Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Net-
works, Proceedings, IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 2004, 
pp. 985-990

[24] Huang, G. B., et al., Extreme Learning Machine for Regression and Multiclass Classification, IEEE 
Transactions on Systems, Man, and Cybernetics, Part B, 42 (2012), 2, pp. 513-529

[25] Bartlett, P. L., The Sample Complexity of Pattern Classification with Neural Networks: The Size of the 
Weights is More Important than the Size of the Network, IEEE Transactions on Information Theory, 44 
(1998), 2, pp. 525-536

Paper submitted: May 9, 2022
Paper revised: October 31, 2022
Paper accepted: November 1, 2022

© 2023 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


