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The objective of this paper is to evaluate the capability of an ANN to classify the 
thermal conductivity of water-glycol mixture in various concentrations. Massive 
training/validation/test temperature data were created by using a COMSOL model 
for geometry including a micropipette thermal sensor in an infinite media (i.e., wa-
ter-glycol mixture) where a 500 µs laser pulse is irradiated at the tip. The random-
ly generated temporal profile of the temperature dataset was then fed into a trained 
ANN to classify the thermal conductivity of the mixtures, whose value would be 
used to distinguish the glycol concentration at a sensitivity of 0.2% concentration 
with an accuracy of 96.5%. Training of the ANN yielded an overall classification 
accuracy of 99.99% after 108 epochs.
Key words: ANN, classification, temperature profiles, thermal conductivity,  

heat transfer

Introduction

Single-cell thermal properties are a rapidly growing field of study because the ther-
mal energy inside of the cell interacts with all its biochemical reactions [1, 2]. One of the most 
essential of these properties is thermal conductivity as it governs every heat transfer problem 
in biomedical engineering. In regards to biology, thermal conductivity can be used as a way to 
evaluate cell viability and cancerous disease state, similar to the proliferation index in which tu-
mor progression is assessed [3, 4]. Many methods for cellular level thermometry have been 
created for the measurement of single cells, such as utilizing electron spin from nitrogen va-
cancies in diamond nanoparticles and fluorescent nanothermometers utilizing nanoparticles  
[5, 6]. It has been shown that a simple method for single-cell measurement was a combination of 
a thermocouple inside of a micropipette and laser point heating [7]. Thermal conductivity can then 
be found from the transient temperature profiles using a COMSOL computational model and a 
multi-parameter fitting program [8]. However, the process of obtaining the thermal conductivity based 
on a measured temperature profile was revealed as costly due to large computational time and limited 
computer resources. Machine learning serves as an efficient alternative to numerical analysis [9].

Machine learning makes it possible to process large amounts of data to accomplish 
specific tasks, namely, to recognize patterns in the dataset [10]. This is useful in applications 
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such as computer vision, speech processing, and game playing [11]. The ANN work on pattern 
recognition and are trained with large data sets of known solutions [12]. Once the training is 
completed, the trained ANN can solve complex problems instantaneously with high accuracy 
[13]. This is based upon the concept of neurons in the brain, where nodes are connected to syn-
apses with weighted values to make decisions [14]. Many ANN use supervised training where 
the error from the known solutions is backpropagated through the system of neurons and the 
weights are adjusted by the errors between ground truth and ANN outcomes [15]. This process 
is iterated until an acceptable level of error is achieved [16]. 

According to recent research reports, the ANN predictive models show a trend that 
their prediction accuracy is very much affected by ANN structures, used parameters, and the 
utilized algorithm [17]. Material design through ANN modelling was suggested where an ANN 
predictive model so-called co-training style semi-supervised ANN model was used to take ad-
vantage of unlabeled data to refine the prediction [18]. Machine learning, especially ANN have 
been used for various thermal characterization related tasks, including the prediction of hy-
brid nanofluids and ethylene glycol thermal conductivities [19, 20]. These utilize a multi-input 
single output regression learning model, where the inputs are the concentration, density, and 
temperature of the fluids. The output is the thermal conductivity of the fluid. Furthermore, ANN 
modelling has been employed to predict thermal properties of various materials including poly-
mer composites [21], bakery products [22], soils [23], fruits and vegetables [24], rocks [25], 
and phase change materials [26]. 

Unlike the Fourier series approach in [20], we propose a real-time approach for the 
thermal conductivity prediction of a glycol solution by measuring the time-series heat propa-
gation profile. Therefore, an ANN trained with the time-series temperature profiles of known 
thermal conductivities can be proposed to predict parameters (i.e., thermal conductivity) of 
a target chemical or a biological system including liquid or a biological cell. To that end, we 
first obtain massive heat propagation profiles using the PDE (1) varying the thermal conduc-
tivity and training an ANN model for the sim-to-real approach. Once trained, classification is 
instantaneous thereby solving the issues of computation time. Since the AI model is trained by 
the time-series heat propagation data, the proposed approach is unique and useful for real-time 
physical and biological property measurement for time-critical medical applications, in-situ 
biological screening, or real-time physiological metabolism analysis. 

In order to obtain a large enough data set for training, a simulation model can be cre-
ated in COMSOL to create transient temperature profiles of liquids with varying thermal prop-
erties. When training is complete, the ANN can be verified with real liquids. This is known as 
a sim-to-real approach, whereby the network is trained with a simulation dataset from a model 
and tested with experimental data [19]. This work is intended to show the capability of ANN in 
classifying the thermal conductivities of a model system (liquid) before this approach is used 
in sim-to-real cases. Furthermore, this sim-to-real approach as a next step will be utilized in 
classifying cell or tissue thermal conductivities in in vivo setting. 

Methodology

This section will cover the preparation of the training data, details of the simulation, 
as well as the method used to structure and train the neural network.

Training data preparation 

Training data were generated using a PDE solver. The COMSOL Multiphysics was 
chosen to calculate transient temperature profiles given a parameter – thermal conductivity 
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for a model shown in fig. (1). Thermal conductivity, k, of the PDE in eq. (1) below is the only 
parameter we used to evaluate the proposed ANN in terms of feasibility in the prediction of 
thermal conductivity:

( )p
Tc k T Q
t

ρ ∂
+∇ − ∇ =

∂
(1)

where ρ is the density, cp – the specific heat, T – the temperature, and Q – the heat source at the 
tip.

The model, fig. 1, represents a micropi-
pette thermal sensor (MTS) subjected to point-
source heating at the tip of the sensor. The junc-
tion of the thermocouple (i.e., MTS) is an inner 
core of bismuth and a thin outer coating of 
nickel with a 200 nm thickness. The simulation 
was built by a 2-D axisymmetric model of the 
MTS surrounded by a cylindrical fluid domain, 
with radius of 100 µm and height of 150 µm. In 
the simulation, a fine mesh was selected where 
element sizes range from 13.3-0.75 µm. The 
size on the mesh was decided by comparing the 
temperature profiles from four different sizes 
(13.3 µm, 9.26 µm, 5.0 µm, and 2.5 µm), it was 
found that there was only an RMS Error value of 
0.01103 K between a mesh size of 13.3 µm and 
2.5 µm. Therefore, the fine mesh size of 13.3 
was used to save on computational time. On 
the outer nickel coating of the micropipette, a 
boundary-layer was selected to increase the den-
sity of the mesh, for enhanced accuracy of the conduction. The boundary condition for this study 
was setting the change in heat on the outer edge of computational domain to zero. This boundary 
condition signifies no heat transfer at the edge of the boundary during the time of short heat pulse of  
500 µs. The COMSOL performed a time dependent temperature direct solution using the 
PARDISO method [27].

The evolution of temperature depends upon the thermal conductivity of the surround-
ing liquid-water and glycol mixture in the current study. A 100 µW single-shot point heat source 
with a Gaussian profile and a 500 µs pulse duration was set on the center of the MTS tip. The 
temperature profile was taken from the surrounding liquid and saved for the training data set. 
The accuracy of the numerical model was verified by experimental cross check from our pre-
vious paper [8]. In this report, the same numerical model was used to calculate the transient 
temperature evolution compare it with experimentally measured data to estimate thermal con-
ductivity of various, known non-volatile fluids within 2-3% accuracy.

The concentration of glycol in water has a direct impact on the mixture’s thermal 
properties. Specifically, thermal conductivity decreases with the increase of glycol. Differences 
in thermal conductivity vs. the concentration can be seen in tab. 1, which separates the data 
and assigns each thermal conductivity range a label. Nine different labels were created for 10% 
changes in glycol concentrations. Next, 100 temperatures vs. time data sets were generated 
for each of the classification labels, for a total of 900 sets to be used for training the ANN. 
Each data set had 126 data points to correspond to temperature sampling every 4 µs for a  

Figure 1. The 3-D cut away COMSOL 
Multiphysics simulation of MTS with 
temperature scale [28]
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500 µs duration. This temperature data was normalized using the min-max method [29], which 
is shown in eq. (2). The Tmin and Tmax represent the minimum and maximum temperatures of that 
data set, respectively:

min
normilized

max min

iT T
T

T T
−

=
−

(2)

Table 1. Range of thermal conductivity values

Glycol [%] Thermal conductivity 
range [Wm–1K–1]

Density
[kgm–3] Classification label

0-10% 0.608-0.542 999.4-1009.2 [ 1 0 0 0 0 0 0 0 0]
10-20% 0.541-0.484 1009.3-1020.1 [ 0 1 0 0 0 0 0 0 0]
20-30% 0.483-0.432 1020.2-1029.4 [ 0 0 1 0 0 0 0 0 0]
30-40% 0.431-0.385 1029.5-1037.3 [ 0 0 0 1 0 0 0 0 0]
40-50% 0.384-0.342 1037.4-1043.9 [ 0 0 0 0 1 0 0 0 0]
50- 60% 0.341-0.303 1044.0-1049.3 [ 0 0 0 0 0 1 0 0 0]
60-70% 0.302-0.268 1049.4-1053.5 [ 0 0 0 0 0 0 1 0 0]
70-80% 0.267-0.238 1053.6-1054.2 [ 0 0 0 0 0 0 0 1 0]
80-90% 0.237-0.214 1054.3-1052.3 [ 0 0 0 0 0 0 0 0 1]

Normalization allows for the data to be set on the same scale. This is important in 
machine learning when the range for the data is different and allows for faster convergence [16]. 
Along with this faster convergence the magnitude or power of the point heat source becomes 
negligible, and the profile only depends on the thermal conductivity. These normalized profiles 
can be seen in fig. 2.

Figure 2. Normalized temperature profiles of propylene glycol concentrations

Training ANN with simulated data
Once the training data was prepared, a neural network model is designed and trained. 

The Neural Net Pattern Recognitionol in MATLAB was used to generate and train the designed 
network using the default scaled conjugate gradient method (SCGM). This method is similar 
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to the gradient descent method where the gradient of the cost function with respect to weights 
is calculated and subtracted from each weight set to reach a minimum. The difference comes in 
through the learning rate. In SCGM the learning rate is varied based on the slope of the gradient 
[30]. Therefore, if the gradient is large, the learning rate increases and decreases if the gradient 
is small. This allows for faster and more accurate learning when compared to traditional gradi-
ent descent in which the learning rate is constant.

The cost function that was used to represent uncertainty in this study is the cross-en-
tropy loss function (CELF) [29]. This loss function is based upon the concept of entropy or 
the uncertainty in possible outcomes. When the probability of the ANN classifying the correct 
output is high the loss of the function is minimized:

( )
1

log
n

CE i i
i

L t p
=

= −∑ (3)

where p and t are the probability and true result, 
respectively. 

A network diagram is shown previously 
in fig. 3. The 126 input nodes correspond to the 
temperatures at 4 µs time intervals. The differ-
ently sized hidden layers were generated from 
25-150. Next, the output was a vector of nine 
nodes to represent the different classification 
labels. The normalized data were randomized 
and separated into 70% training, 15% valida-
tion, and 15% testing data sets. Training data 
sets are used with optimization methods such 
as gradient descent. Validation sets provide a 
way to evaluate the model during training. This 
prevents overfitting of the data by early stop-
ping. The final testing data is used to evaluate 
the trained model.

Evaluating the network
The network can be evaluated by using a confusion matrix. This matrix is a visual 

way to view the performance of the network. It shows the number of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN) produced by the network from the 
training, validation, and testing data. Most confusion matrixes are shown from binary machine 
learning models, meaning only two outputs. In this study, the confusion matrix generated is 
from a multiclass machine learning model, where there were nine outputs. 

There are several metrics that can be utilized to evaluate the performance of a clas-
sification mode: Precision, Accuracy, and F1 score [28]. Precision represents the number of 
positive classifications the network returned that were positive. Recall indicates the number 
of positive samples that were correctly classified. The F1 score is the harmonic mean of the 
precision and recall of the model:

Recall TP
TP FN

=
+

(4)

Figure 3. Neural network diagram, left side is 
the 126 temperature imputes connected by a 
system of weights to the hidden layer; lastly, the 
hidden layer is connected to the output nodes 
that represent the thermal conductivity ranges
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Precision TP
TP FP

=
+

(5)

Prcision Recall 2F1 Score 2
Precision Recall 2

TP
TP FP FN

×  = =  + + + 
(6)

In the case of the multiclass model, each of the metrics can be found by the individual 
classification or by the total TP, FP, and FN of the model. When the totals are used to calculate 
the recall and precision, the following F1 score is known as the micro F1 score. This can be seen 
eq. (7) where Precision and Recall is the total precision and total recall, respectively. In which 
the total means these are metrics are calculated using TP of the entire matrix over the number 
of data sets used in the matrix, because the FP and FN are considered equivalent. Therefore, 
in multiclass models, the accuracy, precision, and micro F1 score are all equal. The macro F1 
score can also be used, as it calculates the average of the individual class’s F1 score. Therefore, 
it depends on each class F1 more than the overall accuracy of the network. Lastly, the weighted 
F1 score can be found by using the total number of samples for each class and multiplying by 
their F1 score and dividing by the total number of samples:

T.Precision T.RecallMicro F1 Score 2
T.Precision T.Recall

×
=

+
(7)
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Results and discussion

Training results for the ANN 

The first part of the study was to determine 
the number of nodes that would yield the low-
est error in classification. Six different networks 
were created with different hidden layer sizes 
ranging from 25-150. All networks were given 
the same simulated data in which each class rep-
resent a 10% change in glycol. Next, the micro 
and macro F1 score was calculated using each 
network’s confusion matrix. Since each class 
had the same amount of data the Weighted F1 
score would be equal to macro F1. The micro 
and macro F1 scores were almost equal except 
for the 50 node configuration. This is mostly caused by the lower accuracy of the network 
and in turn higher deviation between each class F1 score when compared to the other net-
work configurations. Results for this are shown in tab. (2). 

Table 2. Results of hidden layer size testing 
from 10% change in glycol concentration 
where column one represents the hidden 
layer size, two is the micro F1 score, 
and three is the macro F1 score

Hidden 
layer size

Micro F1 
score

Macro F1 
score

25 0.9988 0.9988
50 0.9933 0.9962
75 0.9988 0.9988
100 1.00 1.00
125 0.9888 0.9888
150 0.9977 0.9977
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All the networks performed similar to 
each other with a 99% accuracy or above, and 
there was no clear correlation between hidden 
layer size and accuracy. The configuration with 
100 nodes after training for 109 epochs yielded 
a 100% accuracy for training, validation, and 
testing data. This training epoch had a valida-
tion performance of 0.00852 from the CELF. 
The total confusion matrix can be seen in fig. 4. 
The column on the far right of the plot shows 
the precision of each class, or the percentage of 
the classes that were correctly identified. While 
the bottom row shows the recall of the exam-
ples or the percentage of examples that were 
correctly identified as positive. The bottom 
right corner shows the overall accuracy of the 
ANN, which is equal to the Micro F1 score as 
discussed in the method. 

Sensitivity analysis on ANN

The last part of the study was to analyze 
the sensitivity of the network to find the small-
est amount of concentration change the network can classify. The hidden layer configuration 
of 100 nodes was used for each network training, as it showed the highest level of accuracy in 
the previous section. In order to reduce the output size a 0-10% of glycol concentration was 
simulated in COMSOL. This data was used to train five different networks: 0.1%, 0.2%, and 
0.5%, 1%, 2%, and 5% change in the concentration of glycol. It was found that the sensitivity 
had an inverse effect on the accuracy. It means that as the ANN was trained to classify smaller 
percent changes in glycol the overall accuracy declined. Along with this, the number of epochs 
increased as the sensitivity increased. This study shows promise that the ANN can classify 
small changes in glycol concentrations up to 0.2%, with a 96.5% accuracy. These results can 
be seen in fig. 5. The accuracy of the model is comparable to the results found in Kurt’s ANN 
regression model utilizing the Fourier method 
[20]. One distinct difference is the number of 
different input types. Kurt’s regression model 
used temperature, nanoparticle concentration, 
and fluid density as inputs to the ANN. Direct 
comparisons cannot be made to Kurt’s regres-
sion model as the methods to measure accuracy 
between regression and classification are dif-
ferent. Where regression utilizes a R2 and mean 
average percent error to measure accuracy, and 
classification utilizes the F1 score. However, 
our approach could be used as an alternative to 
Kurt’s regression model in which the heat pa-
rameters of the fluid such as density and con-
centration are unknown. 

Figure 4. Total data confusion matrix 
for 125 node hidden layer size; the green 
diagonal represents the data sets the 
network got correct; the far-right column 
shows the precision for each class, while 
the bottom row shows the recall

Figure 5. Sensitivity analysis of varying percent 
changes in glycol concentrations; the left axis 
represents accuracy of the trained ANN, and 
the right axis represents the number of epochs 
needed to converge to a minimum error
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Conclusions

In the proposed study, it was found that the ANN can accurately classify the thermal 
conductivity of water-glycol mixtures at various concentrations. Training data were created by 
COMSOL, a PDE solver. The numerical model to obtain training data for the ANN is an MTS 
tip in an infinite media subjected to laser irradiation where all parameters were held constant 
except for the thermal conductivity. The simulation consisted of heating the tip of the MTS with 
a 500 µs laser pulse at 532 nm wavelength, and the transient temperature profile was collected. 
The MATLAB was used to generate the ANN model and randomize the data sets into training, 
validation, and testing. Different network arrangements were tested by varying the number of 
nodes in the hidden layer from 25-150. Training of the network consisted of SCGM. Once the 
network was trained, validation and test sets were fed into the trained ANN.

The highest accuracy ANN configuration was with a hidden layer of 100 nodes, which 
attained an overall classification accuracy of 100.00% from training, validation, and test data 
sets. There was no statistical correlation between the layer size and the accuracy. A sensitivity 
analysis was also conducted on the ANN and showed a 96.5% accuracy in classifying glycol 
changes up to 0.2%, or a 0.0066 W/mK change in thermal conductivity. However, these were 
only verified with simulated data. To further prove the method, the model must be verified 
against experimental data. This proposed approach is unique as it uses a classification ANN that 
is trained with time-series heat propagation data, whereas others use a regression model trained 
with density, concentration, and current temperature of the sample [19, 20], which is useful 
for real-time physical and biological property measurements. Applications for this model are 
time-critical medical scenarios i.e. surgical operations, in-situ biological screening, or real-time 
physiological metabolism analysis. 
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Nomenclature
cp 	 – specific heat, [Jkg–1K–1]
k 	 – thermal conductivity,	 [Wm–2K–1]
LCE 	– Ross entropy loss function, [–]
Q 	 – heat input, [mW]
Tmax 	– maximum temperature, [K]
Tmin 	– minimum temperature, [K]

Greek symbol

ρ 	 – density, [kgm–3]

Acronyms

FP	 – false positive, [–]
FN	 – false negative, [–]
TN	 – true negatives, [–]
TP 	 – true positive [–]
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