
Das, S. E.: Retrieval of Solition Solutions of (1+1)-Dimensional … 
THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 2, pp. S801-S810 S801 

RETRIEVAL  OF  SOLITON  SOLUTIONS  OF  (1+1)-DIMENSIONAL   

NON-LINEAR  TELEGRAPH  EQUATION 

by 

Sebahat Ebru DAS 

*

 

Department of Mathematics, Yildiz Technical University, Istanbul, Turkey  

Original scientific paper 
https://doi.org/10.2298/TSCI22S2801D 

In this work, we aim to determine the possible soliton solutions and examine the 
behaviors of the (1+1)-dimensional non-linear Telegraph equation (NTE) which 
is used to model signal processing for the propagation of transmission of the 
electric impulses and also wave theory process by using the extended Kudryashov 
method. We started by finding the non-linear ordinary differential form of the 
(1+1)-NTE with the aid of a suitable wave transformation. Then, the extended 
Kudryashov method approach has been demonstrated and implemented to the ob-
tained non-linear ordinary differential form. As a result, a polynomial expression 
has been achieved and converted to a linear algebraic equation system. Soliton 
solutions of the investigated equation are produced by solving the system and 
choosing the appropriate solution sets. Finally, graphical depictions, gained re-
sults and necessary comments are given. 
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Introduction 

Non-linear evolution equations play a very active role in mathematical modeling of 
the complex problems arise in many fields such as physics [1, 2], biology [3], optics [4, 5], 
fluid mechanics [6], and so on. To determine the exact solutions of these kind of equations 
has become attractive for the researchers. In the last decade, many significant solution 
methods have emerged as a result of the devoted work of these researchers. Methods such as 
tanh-function method [7, 8], the '( / )G G -expansion function method [9, 10], integral method 
[11], Hirota’s direct method [12] and so on. For more work, see [13-33]. 

In this work, we applied the extended Kudryashov method, which is an effective 
method to solve the NTE. There are many studies in which the proposed method has been 
applied in the literature. Hassan et al. [13] applied the method to the (2+1)-D Painleve 
integrable Burgers equations and the (2+1)-D Korteweg-de Vries-Burgers equation. Zayed et 
al. [14] determined the optical solitons and other solutions to fiber Bragg gratings with 
dispersive reflectivity having Kerr law of non-linear refractive index via the method. Borai et 
al. emerged the solutions of the Kundu-Eckhaus equation with the help of the extended 
Kudryashov method in [15].  

In this article, we consider the (1+1)-D non-linear Telegraph equation that is given 
in the following form [11]: 

–––––––––––––– 
* Author’s e-mail: eyeni@yildiz.edu.tr 
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 3 0tt xx tB B B aB bB      (1) 

where ( , )B B x t  is a real valued function, Bxx is the second order dispersion term, a and b 
are the real values. Equation (1) is referred to as 1-D the second-order Telegraph equation 
with constant coefficients or 1-D the second-order hyperbolic Telegraph equation with 
constant coefficients. Equation (1) is not only used for signal analysis for transmission and 
propagation of electrical signals but also it is used to model a mixture between diffusion and 
wave propagation of finite velocity to standard heat or mass transport equation. Therefore, the 
eq. (1) has common usage areas such as transmission lines, heat transfer, random walks, 
biological population dispersal, chemical kinetics, etc. 

In the literature, there are many significant works on NTE. For instance, Mirzazadeh 
et al. [11] investigated the exact solution of NTE using by the first integral method. Hossain 
et al. [16] applied modified simple equation method to the NTE to obtain the soliton 
solutions. In the work of Zayed et al. [17], they examined the exact solutions of the TE with 
the help of generalized Kudryashov method. At the work of Rizvi et al. [18], they determined 
the soliton solutions of the NTE in electrical transmission line using Hirota bilinear method.  

Wave transformation of the investigated problem  

and having NODE form 

To determine the NODE of the eq. (1), let us define the wave transformation as: 

 ( , ) ( ),B x t B kx t       (2) 

where ( ), ,B k   present the wave amplitude, frequency and wave number, respectively. Be-
sides, ,k   are non-zero real numbers. When we insert the eq. (2) and derivatives into eq. (1), 
we determine: 

 3 2 2( ) ( ) ( ) ( )( ) 0aB bB B k B           (3) 

as the NODE form of eq. (1). If one can consider the terms ),(B  , 3( )B  in eq. (3) and apply 
the balance rule, compute the m as 1,m   which is known as balance number.  

A brief description of the proposed method and  

application to the Telegraph equation 

Based on the EKM [11, 33], the solution of eq. (3) is suggested: 

 0
1 1

( ) ( ) ( ) ( ) ( )
m m

i j i j
ij ij

k i j k k i j k

B a a b         

     

       (4) 

where 0 , ,ij ija a b are real constants, m is the balance number, the functions ( )   and ( )   
feed the following formulas:  

 

2
2 1

2
2 1 0

d ( ) ( ) ( )
d

d ( ) ( ) ( )
d

R R

S S S

 
   



 
   



 

  

 (5) 

where 2 2,R S  should not be zero together and eq. (5) has the following solutions: 
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 (6) 

Here 1 2 1 2, , ,R R S S  are real values, 2
1 0 24 .S S S    If we take eq. (4) and consider 

the balance number as 1,m   the suggestion of eq. (4) degenerates into following form: 

 10 01
0 10 01( ) ( ) ( )

( ) ( )
b b

B a a a    
   

      (7) 

For simplicity, we will accept that 0 0 ,A a  1 10,A a 2 01,A a  1 10,B b  and 
2 01.B b  

When we substitute eq. (7) in eq. (3), taking into account eq. (5), and equalize the 
coefficients of the obtained equations to zero, we get the following system:  

0 0 3 2 2 2
2 0 2 2 2 2 0 0 2 0 1 2 0 1 1 1 2

2 2 2
1 1 2 2 1 2 2 1 2 0 1 1 0 2 2

. :

6 6 0

Coeff A S B R B S bA aA A S S k A S S B R R k

B R R B S S k B S S bA A B bA A B

     

 

        

     
 

1 0 2 2 2 2
1 1 1 0 1 1 2 2. : [( ) (3 3 6 ) ] 0Coeff A k R R A A B A B b a            

0 1 2 2 2 2 2 2
1 1 2 0 0 1 1 2 2 2 0 2. :[( ) 2 (3 6 3 ) 2 ] 0Coeff k S S S S A A B A B b S k S a A             

1 0 2 2 2 2
1 1 1 0 1 1 2 2. : [( ) (3 3 6 ) ] 0Coeff B k R R A A B A B b a             

0 1 2 2 2 2 2 2
2 1 1 2 0 0 1 1 2 2 2 0. : [( ) 2 (3 6 3 ) 2 ] 0Coeff B k S S S S A A B A B b S k S a              

1 1
0 1 2. : 6 0Coeff bA A A    

1 1
0 1 2. : 6 0Coeff bA A B    

1 1
0 2 1. : 6 0Coeff bA A B    

1 1
0 1 2. : 6 0Coeff bA B B     

2 0 2 2
1 1 2 1 2 0 1 2. : (3 3 3 ) 0Coeff A k R R R R bA A R        

0 2 2 2
2 1 2 1 2 0 2 2. : ( 3 3 3 ) 0Coeff A k S S S S bA A S         
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 3 0 2 2 2 2
1 2 1. ( ) ( ) : ( 2 2 ) 0Coeff bA k R A        

   

 0 3 2 2 2 2
2 2 2. : ( 2 2 ) 0Coeff bA k S A      

   

 3 0 3
1. : 0Coeff bB    

 0 3 2 2 2 2
2 2 0. : ( 2 2 ) 0Coeff B bB k S       
   

 0 2 2 2
2 0 1 0 1 0 2 0. : ( 3 3 3 ) 0Coeff B k S S S S bA B S           

 2 0 2
0 1. : 3 0Coeff bA B    

 1 2 2
1 2. : 3 0Coeff bA A    

 1 2 2
1 2. : 3 0Coeff bA B    

 1 2 2
2 1. : 3 0Coeff bA B    

 1 2 2
1 2. : 3 0Coeff bB B     

 2 1 2
1 2. : 3 0Coeff bA A    

 2 1 2
1 2. : 3 0Coeff bA B    

 2 1 2
2 1. : 3 0Coeff bA B    

 2 1 2
1 2. : 3 0Coeff bB B      (8) 

After solving the previous system, we achieve the following sets and related solution 
functions: 

Case I. Let 1 0, 0.R    For the following set: 

 
2

1
1 2

1

1 1 2 2 0 1 1 2 1 2

39 2 3, , ,Set 3 2 2
, , 0, , 0, 0, 0

ab Aa a a
k R R

a
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 
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 
     

  
        

 (9) 

the solution of eq. (1) related to eq. (9) is: 

 
2

1
9 2 3
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1
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a

B

b

x
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t


 
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  (10) 
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Case II. Let 1 0, 0.R    For the set: 

  

 
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2

2 2 1 2 2
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0
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
 
     

  
  

  
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   

 (11) 

the solution of eq.(1) corresponding to eq.(11) is considered: 

 2

2,1

2

2
2

(9 2) 9 3 9 2 2
(9 2) tanh 9 2

36 8

2 (
( , )
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a a
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 (12) 

or 

 2
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a a
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Case III. Let 1 0, 0.R    For: 
2 2

1
1 2 1 1

3 2

2 2 0 1 1 2 1 2

( 9 2)3 9 2 9 2, , ,
9 2 2 2Set

( 9 2) 9 2
, , , 0, 0, 0

(9 2)

a b Aa a k a a
R R S S

a k k

a b a a
S S A A A A B B

a b


   
    

 
  

   
      

 

 (14) 

the solution of eq. (1) according to eq. (14) is taken: 

 

2

2

(9 2)(3 9 2 )
18 4

(9 2)(3 9 2 )
2 18 4

1

3( ,
( 9 2) e
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)
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a
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  




  





 

 
    
 
 

 (15) 

Case IV. Let 1 0, 0.R    For the following set: 
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4
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9 2 3, , ,
3 2Set
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

 
    
 
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       

 (16) 
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the solution of eq. (1) corresponding to eq. (16) is given: 

 

2

2

9 2 3
2 2 2

9 2
2

2

4
3
2

3 e

3 e

( ,

2

)
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

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
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  (17) 

Case V. Let 1 0, 0.R    For: 
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 (18) 

the solution of eq. (1) related to eq. (18) is given: 
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
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    
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  
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



 (19) 

Result and discussion 

This section contains the graphical presentations of the results which are obtained in 
the article.  

We characterized fig. 1 which is obtained by choosing 1( , )B x t  in eq. (10), 1Set  in 
eq. (9) and selecting the particular values as 1.65, 1, 1.2,a b       

0 1 2 11, 3, 1, 1.S S S A     Figure 1(a) shows the 3-D chart of 1( , )B x t , fig. 1(b) shows the  
2-D charts of 1( , )B x t  for 1,2,3,4,5.t   Figure 1(a) describes a kink soliton while is a well-
known soliton type and fig. 1(b) represents the wave at 1,2,3,4,5.t   From fig. 1(b), we can 
see that wave is a leftward traveling wave. 

Figure 2 is determined by selecting 2,1( , )B x t in eq. (12), 2Set  in eq. (11) and with 
the specific values 1.65, 2.6, 1,a b      2 21.5, 1.S R    Figure 2(a) depicts the 3-D 
chart of 2,1( , )B x t , fig. 2(b) shows the 2-D charts of 2,1( , )B x t  for 1,2,3,4,5.t   Figure 2(a) 
illustrates a kink soliton shape, and fig. 2(b) have the waves which have leftward traveling 
wave character. 

Figure 3 is plotted by choosing 3( , )B x t in eq. (15), Set3 in eq. (14) and for the values 
1.65, 2.6, 1,a b      2 21.5, 1.S R    Figure 3(a) describes the 3-D chart of 3( , ),B x t  
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fig. 3(b) shows the 2-D charts of 3( , )B x t  for 1,2,3,4,5.t   Figure 3(a) illustrates a kink soli-
ton shape, and fig. 3(b) have the waves which have rightward traveling wave character. 

  
Figure 1. Representation of B1(x, t) in eq. (10) with Set1 in eq. (9) and a = –1.65, b = 1, ω = –1.2, S0 = 1, 
S1 = 3, S2 = 1, A1 = 1; (a) 3-D graph of B1(x, t) and (b) 2-D graph of B1(x, t) 

 

   
Figure 2. Illustration of B2.1(x, t) in eq. (12) with Set2 in eq. (11) and a = 1.65, b = –2.6, ω = –1, S2 = 1.5, 
R2 = –1; (a) 3-D graph of B2,1(x, t) and (b) 2-D graph of B2,1(x, t)  

Although figs. 1-3 graphics reflect the kink soliton character as a general image, 
they physically have a different meaning in all three graphics. Figure 1 indicates that wave 
moves to the leftward depend on time according to x-direction, while fig. 3 indicates that 
wave moves to the rightward. In a sense, the wave in fig. 1 moves to left and the wave in 
fig. 3 moves to right. Also, if we accept the level where the vertical amplitude of the soliton is 
zero as the neutral level, in fig. 1 the entire soliton is above the neutral level. At fig. 3, the en-
tire soliton is below the neutral level. The soliton in fig. 2, as in fig. 3, moves to the left de- 
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Figure 3. Representation of B3(x, t) in eq. (15) with Set3 in eq. (14) and a = –1, b = 1, k = 1, R2 = 0.5,  
S1 = 1; (a) 3-D graph of B3(x, t) and (b) 2-D graph of B3(x, t)  

pending on time, although it is formed below the neutral level. So the direction of the soliton 
is to the left. In this sense, as an orientation, figs. 2 and 3 representations are to be called the 
kink soliton (a wave moving to the right or to the right depending on time), fig. 1 can be 
called an anti-kink soliton (a wave that turns left or moves to the left depending on time). 

Figure 4 is obtained by taking 1( , )B x t  in eq. (10) with 1Set  in eq. (9) and 
1.65, 1, 1.2,a b     0 1 2 11, 3, 1, 0.25.S S S A      Figure 4(a) shows a singular soliton 

shape and fig. 4(b) represents the waves at the values of 1,2,3,4,5.t   The wave has a left-
ward traveling wave character. In the fig. 4 representation, we see that the singular solution 
character behaves differently to the left and right of the place where the singularity occurs. 
While approaching the point where singularity occurs from the left, the amplitude of the soli-
ton suddenly decreases from the neutral level to an infinitely small negative value, and on the 
right it increases from a positive value 1[1 ( , ) 2]B x t   to an infinitely large value. This be-
havior naturally does not mean that the amplitude of the wave takes an infinitely small (large) 
value, but that the amplitude of the wave ceases to be measurable at this point. 

   
Figure 4. Representation of B1(x, t) in eq. (10) with Set1 in eq. (9) and a = 1.65, b = 1, ω = 1.2, S0 = 1,  

S1 = 3, S2 = 1, A1 = –0.25; (a) 3-D graph of B1(x, t) and (b) 2-D graph of B1(x, t) 
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Conclusion 

In this paper, we investigated non-linear Telegraph equation that has an important 
place in the modelling of electrical transmission. Although, many studies have been done on 
this equation, the extended Kudryashov method is applied to the form of the non-linear Tele-
graph equation for the first time. Kink and singular soliton solutions are produced. Graphical 
representations have been given with 3-D and 2-D to show the physical illustrations of some 
obtained solutions. 
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