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In this paper, we compute H-norm of a transfer matrix, via bisection algorithm. 
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Introduction  

In control theory, one of the most common handicaps is designing controllers for 

systems that can perform effectively even when faced with different kinds of variables and 

irregularities. The works performed to overcome this handicap breed many number of control 

methods. The H control is one of the most powerful techniques in control theory which was 

created to alleviate modelling errors and undetermined disturbances while getting measurable 

optimization for large-scale multivariable problems. Here H is the space of all bounded 
analytic matrix valued functions in the open right-half complex plane. The theory was 

introduced by Zames [1]. The main principle of the theory is based on formulating the 

problem of sensitivity reduction as an optimization problem with an operator norm that is H-

norm. To put it more clearly, to make effort to find the the best controller among others which 

minimizes the H-norm of some kind of the transfer function of the system. In 1980’s it was 

applied in many works and extended to associated various concepts of control theory such as 

gain matrix, algebraic Riccati equation, state-space solutions etc. [2-6]. Recently, it is studied 

by Jiang et al. [7].  

This paper is organized in 5 sections. Some basic definitons, notations and 

propositions which will be used through the paper are given in Section 2. In Section 3, some 

theorems which our algorithm derived from them are told, the algortihm is explained in detail 

and a couple formulas and equations, which are essential to remove a large number of 

undesirable operations and to execute the algortihm in a simple way, are given. Two 

numerical examples and related tables of iterations and values are given in Section 4. Finally, 

Section 5 is about efficiency of the algorithm and the reason of an insignificiant amount of 

deviation of the error tolerance. 

–––––––––––––– 
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Preliminaries  

Consider the linear dynamic system:  

 
 

 

x Ax Bu

y Cx Du

 

 
 (1) 

where ,  ,  ,  .n n n m p n p mA B C D        Transfer matrix of the system (1) is defined: 

 1( ) ( )G s C sI A B D    (2) 

Let ( ),   ( )j jM M   denote the thj  eigenvalue and thj  singular value of a matrix M 

respectively, where 1/2( ) [ ( )] .T
j jM MM   A  is stable if Re[ ( )] 0j A   for all j. If A  is 

stable H -norm of the transfer matrix G(s) is given: 
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where sup  denotes least upper bound for all frequencies ω which are real.  

Let: 
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be a skew-symmetric matrix where 0 ,  n nI  are n-dimensional zero and identity matrices, re-

spectively. The 2 2n nH   is called a Hamiltonian matrix, if HJ is symmetric, such that 
( ) .THJ HJ  It can be verified from the definition that Hamiltonian matrices exhibit a charac-

teristic block structure form [8]:  
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 where H12 and H21 are symmetric. 

Bisection algorithm 

In control area we know that the eigenvalues express stability of a system where 

Hankel singular values describes the energy of each state of the system. The governing goal of 

the bisection algorithm is constructed on using the connection between stability of the system 

and the energy of the states such that to interrelate singular values of the transfer matrix eval-

uated along the imaginary axis and imaginary eigenvalues of related Hamiltonian matrix 
,M  for given system (1), which is defined: 
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where 2TR D D I   and 2 .TS DD I   
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For special case: 
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The related Hamiltonian matrix M  comes from the proof of the following Theo-
rem. 

Theorem 1. Suppose A has no imaginary eigenvalues, 0   is not a singular value 

of D and 0 .   Then,   is a singular value of 0( )G j  if and only if 0( )M j I   is sin-

gular. 

Here the system (1) need not be observable, controllable or stable. For proof and 

more details see [9]. From Theorem 1 we can also get the following theorem. 

Theorem 2. Let A be stable and ( ).max D   Then, G 

  if and only if M  

has purely imaginary eigenvalues (i.e. at least one). For proof see [9]. 
Bisection algorithm is based on Theorem 2 that is, first we determine lower( lb ) 

and upper ( )ub  bounds. We can choose 0lb   and ub  is sufficiently large and maintain 
with the bisection protocol. But to get convenient bounds we must use Hankel singular 
values which derived by Enns [10] and Glover [11] are: 

    1 maxmax ( ),    max ( ),  ( )/lb max D H D Tr W W n      

 max max

1

( ) 2 ( ) 2   ( )
n

ub j

j

D H D nTr W W   


      (5) 

where jH s are the Hankel singular values and W , W  are observability and controllabil-

ity Grammians of the system (1) respectively which can be evaluated by solving related Lya-

punov equations (by using lyap command in MATLAB) are: 

 
0T TA W W A C C  

 

 0T TAW W A BB    (6) 

Let A be stable and 0ε   be error tolerance for system (1) then bisection algorithm 

is as follows; 

Step 1. Calculate lower and upper bounds for bisection algorithm, where: 

 max 1max ( ),  lb D H   { }  

 max

1

( ) 2
n

ub j

j

D H  


    

Step 2. Set ( )/2lb ub     

If /2,ub lb     end. 
Step 3. Compute M . 

Step 4. Check eigenvalues of M ; 

if there exists a purely imaginary eigenvalue set γlb = γ 
else, set γub = γ. 
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Applications to numerical examples 

In this section, we demonstrated the effectiveness of the method on two examples. 

Example 1. Lateral axis dynamic of an aircraft (L-1011) model. See [12] for more 

details. 
Consider the system (1) with the appropriate parameter given: 
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If the method given above is applied, we obtain the values in the tab. 1. In the table 

the last column is about checking for existence of purely imaginary eigenvalues. We write the 

title as Eig briefly.  

Table 1. Related values of Example 1 

Iteration γlb γub γ Eig 

1 4.6808 16.6071 10.6439 no 

2 4.6808 10.6439 7.6624 no 

3 4.6808 7.6624 6.1716 no 

4 4.6808 6.1716 5.4262 no 

5 4.6808 5.4262 5.0535 no 

6 4.6808 5.0535 4.8671 no 

7 4.6808 4.8671 4.7739 no 

8 4.6808 4.7739 4.7273 no 

9 4.6808 4.7273 4.7040 no 

10 4.6808 4.7040 4.6924 no 

11 4.6808 4.6924 4.6866 no 

12 4.6808 4.6866 4.6837 no 

13 4.6808 4.6837 4.6822 no 

14 4.6808 4.6822 4.6815 yes 

15 4.6815 4.6822 4.6818 no 

16 4.6815 4.6818 4.6816 no 
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After 16 iterations γlb and γub are so close but the error bound   is not satisfied 

which was described in details in  9 , to get a valid ε we must continue iterating. On the other 

hand after 16 iterations all the γ values evaluated by MATLAB will be the same. Thus the 

number of iteration after the 16th will be unnecessary and we can terminate the process and 

say that ( ) 4.6816.G s

 . 

Example 2. A decentralized interconnected system. For additional details see [13]. 
Consider the system (1) with the appropriate parameter given: 

1   0  0   0   0   0 0 1 0   0

1  1  1    0   0   0 1 0 0   0 0 1 0 0 0 0
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If the given method is applied, we obtain the values in the tab. 2. The last column of 

the table is also about checking for, is there purely imaginary eigenvalue or not?. The nota-

tion Eig is used for the same reason as in tab. 1.  

After 20 iterations γlb and γub are so close but the error bound ε is not satisfied which 

as told in Example 1. By the exactly same reason in the Example 1 we can say that 
( ) 29.6784.G s


   

Conclusion 

In this study, bisection method has been applied to a linear dynamic system for case 

D = 0 to find H∞– norm of its transfer function. Two numerical examples has been solved and 

the results showed that the method works satisfactorily and error tolerance is sufficiently 

small after certain number of iterations. Sufficiency of this error tolerance stems from the 

number of decimal digits which MATLAB assigns automatically.  
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Table 2. Related values of Example 2 

Iteration γlb γub γ Eig 

1 8.4201 101.0417 54.7309 no 

2 8.4201 54.7309 31.5755 no 

3 8.4201 31.5755 19.9978 yes 

4 19.9978 31.5755 25.7867 yes 

5 25.7867 31.5755 28.6811 yes 

6 28.6811 31.5755 30.1283 no 

7 28.6811 30.1283 29.4047 yes 

8 29.4047 30.1283 29.7665 no 

9 29.4047 29.7665 29.5856 yes 

10 29.5856 29.7665 29.6761 yes 

11 29.6761 29.7665 29.7213 no 

12 29.6761 29.7213 29.6987 no 

13 29.6761 29.6987 29.6874 no 

14 29.6761 29.6874 29.6818 no 

15 29.6761 29.6818 29.6790 no 

16 29.6761 29.6790 29.6776 yes 

17 29.6776 29.6790 29.6783 yes 

18 29.6783 29.6790 29.6786 no 

19 29.6783 29.6786 29.6784 no 

20 29.6783 29.6784 29.6784 yes 
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