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In this study, we consider an optimal control problem for an Euler-Bernoulli 
beam equation. The initial velocity of the system is given by the control function. 
We give sufficient conditions for the existence of a unique solution of the hyper-
bolic system and prove that the optimal solution for the considered optimal con-
trol problem is exists and unique. After obtaining the Frechet derivative of the 
cost functional via an adjoint problem, we also give an iteration algorithm for the 
numerical solution of the problem by using the Gradient method. Finally, we fur-
nish some numerical examples to demonstrate the effectiveness of the result ob-
tained. 
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Introduction  

Vibration theory has many research applications in the area of applied science, espe-

cially, in fields of building, mechanical and aircraft engineering [1]. So it should be profitable 

to study the control problems associated with the beam systems. Various optimal control 

problems for the beam have been considered recently in the literature. The problems of con-

trolling the coefficient function in the beam equation have been investigated in [2-5]. The 

boundary control problems for the beam system have been studied in [6-11]. When the control 

function is the source term, there have been some control problems [12-16].  

In PDE, the problems of optimal control with the initial condition are studied for the 

different cost functional. There are some studies about the initial control for parabolic prob-

lem [17-19] and for hyperbolic problem [20-22]. Sarac [22] has controlled the initial velocity 

for wave equation
2 ( , )tt xxu a u f x t   with homogeneous Neumann boundary conditions by 

using the following cost functional: 

 
2 2

0 0

( ) ( , ; ) ( ) d ( )d

l l

J v u x T v y x x v x x      

Kowalewski [20] has studied the control problem with the initial condition for the 

hyperbolic problem: 
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by minimizing the performance functional: 

 
2

1 d 2

Ω Ω

( ) ( , ; ) d ( ) dJ v u x T v z x N v v x      

where 1 2, 0    with 1 2 0;    
0 (Ω)dz H  is a given element; 

0 0: (Ω) (Ω)N H H  is a 

positive linear operator. Kowalewski [21] has controlled the initial conditions for a linear hy-

perbolic system in which multiple time delays appear in the state equation.  

In this paper, we consider a beam system given by: 

 

( , ), ( , ) Ω:=(0, ) (0, ]
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  (1) 

where the function F(x, t) is the external load, w(x) is the initial displacement, v(x) is the ini-

tial velocity and l is the length of the beam. The deflection of the beam is denoted by  ,u x t  

in the position x along beam and time t. We assume that 
2 2[0, ; (0, )],F L T L l  

2 (0, )w H l  

are given functions, 
2 (0, )v L l  is the control function and ( , ; )u u x t v  is the solution of the 

problem (1) at (x, t) corresponding to a given control v . 

Now, we recall an admissible controls set 2

2

(0, )
(0, ) :ad cL l

V v L l v v     as a 

closed and convex subset of Hilbert space 
2 (0, )L l , where vc is a constant. The inner product 

and norm in this set will be defined in the same way as on 
2 (0, ).L l   

We shall now formulate an optimal control problem whose solution gives unknown 

initial velocity v. The cost functional is given by: 
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 (2) 

where 1 2, 0    with 1 2 0;    the functions 
2

1 2,  (0, )y y L l  are given target functions; 

0   is a regularization parameter ensures the uniqueness of the solution.  

The aim of this paper is to find the initial velocity from the set Vad that minimizes 

the distances between the solutions ( , ),  ( , )tu x T u x T  and desired target functions 1 2( ), ( )y x y x . 

In other words, our objective is solve the following optimal control problem: 

 *( ) min ( )
adv V

J v J v 


   (3) 
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The most commonly used beam models are based on Euler-Bernoulli beam theory. 

So the control of the initial conditions for Euler-Bernoulli beam systems is an important prob-

lem. This study makes an important contribution to the subject because we control one of the 

initial conditions of a beam problem and focus on numerical computations.  

Solvability of the optimal control problem  

Firstly, we give solvability of the problem (1) for given functions 
2 2[0, ; (0, )]F L T L l , 

2 (0, )w H l  and the control function adv V . The solution of the 
problem (1) is understood in the weak sense. The problem (1) has a unique weak solution 

2[0, ; (0, )]u L T V l , 2 2 2 2[0, ; (0, )],   [0, ; (0, )]t ttu L T L l u L T H l   where:  

2(0, ) : (0, ) :   (0) 0,   ( ) 0 V l f H l f f l      [23-25]. 

If we give an increment adv V   to the control function v  such that ,adv v V   

the difference function ( , ; )u u x t v    is the solution of the following difference prob-
lem: 

 

0,    ( , ) Ω

( ,0) 0, ( ,0) , (0, )

(0, ) 0, (0, ) 0, (0, ]

( , ) 0,  ( , ) 0, (0, ]

tt xxxx

t

xx

xx

u u x t

u x u x v x l

u t u t t T

u l t u l t t T

    

     

    

    

 (4) 

The following lemma will be used in the derivation of Gradient of the cost function-

al. 

Lemma 1. Let u  be the weak solution of the hyperbolic problem (4) and 
2 2[0, ; (0, )],F L T L l  

2 (0, )w H l  and adv V . We have the following estimates: 

 2 2

2 22

(0, ) (0, )
( , ) , adL l L l

u x T T v v V      (5) 

and 

 22

2 2

(0, )(0, )
( , ) , t adL lL l

u x T v v V      (6) 

Let’s rewrite the cost functional: 

 2

2

0 0, )(
( ) ( )

L l
J v J v v    

where 

 
2 2

0 1 1 2 2

0 0

( ) [ ( , : ) ( )] d [ ( , : ) ( )] d

l l

tJ v u x T v y x x u x T v y x x       

Using the estimates (5) and (6) and applying the Cauchy-Schwarz inequality, for in-

crement 0 0 0( ) ( ) ( )J v J v v J v     of the functional 0( ),J v  we get the following inequality: 

 2 2

2

0 1 (0, ) (0, )
( ) [ ]

L l L l
J v c v v      (7) 

where c1 depends on the constants λ1, λ2 and the final time T. The inequality (7) implies that 

the functional J0(v) is continuous (so lower semi-continuous). Also, the functional J0(v) is 

bounded from below since J0(v) ≥ 0 for any .adv V  The admissible control set Vad is a  

non-empty closed, bounded and convex subset of the Sobolev space 
2 (0, ).L l  In view of 

Weierstrass’s existence theorem, the optimal control problem (1)-(2) has a minimum for 
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0.   Moreover, the regularization parameter 0   on the functional (2) establishes the 

uniqueness and continuous dependence to the solution. 

Using the Lagrange multipliers method, we obtain the following adjoint problem: 
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 (8) 

Now, one can get the Frechet derivative of the cost functional by using the adjoint 

approach. The first variation ( ) ( ) ( )J v J v v J v       of the ( )J v  can easily written: 
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 (9) 

The ( )J v  also rewritten in The terms of the solution of the adjoint problem: 
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 (10) 

The Lemma 1 implies that the second term and third term in the right-hand side of 

the eq. (10) is bounded by 2

2

(0, )
[ ]

L l
o v . Taking into account the definition of Frechet differ-

ential at ,adv V  we have: 

 
' ( ) ( ,0; ) 2 ( ) J v x v v x      (11) 

Here one can point out that the Frechet derivative of the cost functional can be ob-

tained via the solution of the adjoint problem. 

Numerical examples and results 

We consider the numerical schemes for optimal control problem (1)-(2) after the 

theoretical results.  

The regularization parameter   has a main role in minimization process. We per-

form two numerical examples to show the efficiently of our algorithm for different  ’s val-

ues.  

Let’s state an iteration procedure based on the previous analysis for a numerical ap-

proximation of the optimal control. This procedure is described as: 

Step 1. Choose the initial value 0 adv V
 

Step 2. Solve the state problem (1) in the weak sense and get the un 

Step 3. Solve the adjoint problem (8) and find the n  
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Step 4. Calculate the gradient 
' ( )nJ v  from the formula (11) 

Step 5. Find the new element 1nv   by using the following minimizing sequence; 

 
'

1 ( ) n n n nv v J v    (13) 

where βn is the parameter of the algorithm assures that 
'[ .) ( )( ]n n n nJ v J v J v     

This iteration is stopped when the stopping criteria 1( ) ( )n nJ v J v     is satisfied  

The stopping parameter ε is a positive constant). If 
' ( ) 0,nJ v   then vn is a station-

ary element for the minimizing problem and the iteration is stopped.  

Example 1. Consider the following problem on the domain Ω : (0,1)(0,2] :  

 

2 4 3[ ( 2 ) 24]sin , ( , ) Ω
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 (14) 

Find * adv V  such that: 

 * *( ) min ( )
adv V

J J v J v 


   

where 
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1
2
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( ) [ ( ,2; ) 0] d [ ( ,2; ) ( 2 )] d

              ( )d

tJ v u x v x u x v x x x x

v x x

 



      



 



 (15) 

Firstly, let us choose 0   in (15) and take: 

 

1 1
2 4 3 2

0

0 0

( ) [ ( ,2; ) 0] d [ ( ,2; ) ( 2 )] dtJ v u x v x u x v x x x x        

In this case, the minimum value of 0 ( )J v  is 
*0 0J   and the optimal solution is 

4 3
* ( 2 ).v x x x    Choosing 0.05n   and the initial element 0 10v x , we get the value 

of the cost functional as 0 200( ) 0.028770,J v   

the norm of the distance between the approxi-

mate solution 200v  and the element *v  as 

2200 * (0,1)
2.496586

L
v v   after 200 iterations.  

For another initial element 0 7cos( ),v x  

we get 0 200( ) 0.025315J v   and 

2200 * (0,1)
2.060566

L
v v   after 200 iterations. 

We plot the graphs of these solutions obtained 

by starting the initial element 0 10v x  and 

0 7cos( )v x  in fig. 1.  

It can be seen from fig. 1 that the functions 

obtained for different initial elements are quite 

different. Moreover, the values of the cost func-

tional for these elements are very close and 

 

Figure 1. Graphs of the solutions for the initial 

element v0 = 10x and v0 = 7cos(x) 
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quite small. In that case, the optimal control problem is ill-posed when 0.    

Now, we consider the optimal control problem (14)-(15) when 0.   If we take 
0.05n   and the stopping criteria 80.1 10    in the numerical algorithm, then we can 

get optimal control functions for different values of the regularization parameter α. In tab. 
1, we give the values of the functional 0 ( )J v  and the norm 2

2

(0,1)L
v  obtained by different 

initial elements for different values of the regularization parameter α. 

It can be seen from tab. 1 that the numerical solutions obtained from three different 

initial elements are close to each other. 

In tab. 2, we obtain some optimal solutions of the problem (14)-(15) by using the 
iteration process. 

Table 1. The J0(v) and 2

2

(0,1)L
v  values for some different initial elements and some α’s 

Example 2. If we take the domain Ω: (0,1) (0,1]   in the problem (1)-(2), we write 

the following problem: 

 

1 1 1
2 2 2

0 0 0

( ) [ ( ,1; ) 3sin ] d [ ( ,2; ) 3sin ] d ( )dtJ v u x v x x u x v x x v x x           (16) 

subject to: 

 

4 2sin [ ( 1) 2],  ( , ) Ω

( ,0) sin , ( ,0) ( ),    (0,1)

(0, ) 0, (0, ) 0,   (0,1]

(1, ) 0, (1, ) 0, (0,1]

tt xxxx
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u u x t t x t
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u t u t t

u t u t t

 



     

  

  

  

 (17) 

Rewrite the cost functional: 

 2

2

0 (0,1)
( ) ( )

L
J v J v v    

where 

 

1 1
2 2

0

0 0

( ) [ ( ,1; ) 3sin ] d [ ( ,1; ) 3sin ] dtJ v u x v x x u x v x x       

In this example we choose the related parameter 0.05n   and the stopping param-

eter 
80.1 1 .0   We give the values 0 ( )J v  and 2

2

(0,1)L
v  obtained by different initial ele-

ments for different α in tab. 3 and the optimal solutions for these initial elements in tab. 4.  

 The initial element v0 = 1 The initial element v0 = x The initial element v0 = x4 

α J0(v) 2

2

(0,1)L
v  J0(v) 2

2

(0,1)L
v  J0(v) 2

2

(0,1)L
v  

0.1 0.00773909 0.31164341 0.00773909 0.31164339 0.00773909 0.31164339 

0.5 0.05999964 0.09664608 0.05999968 0.09664601 0.05999976 0.09664584 

1.0 0.09939388 0.04002670 0.09993943 0.04002626 0.09939508 0.04002550 

1.5 0.12154265 0.02175446 0.12154304 0.02175420 0.12154438 0.02175331 

2.0 0.13550151 0.01364301 0.13550225 0.01364268 0.13550420 0.01364170 
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Table 2. Some optimal controls for some different initial elements and some α’s 

α v0 v* 

 v0 = 1 
9

10

0.002131 0.786769sin( ) 0.504424 10 sin(2 )

0.000075sin(3 ) 0.221025 10 sin(4 )

x x

x x

 

 





   

  
 

0.1 v0 = x 
0.003091 0.787515sin( ) 0.000984sin(2 )

0.000279sin(3 ) 0.000208sin(4 )

x x x

x x

 

 

  

 
 

 v0 = x4 
40.003218 0.788915sin( ) 0.000713sin(2 )

0.000326sin(3 ) 0.000199sin(4 )

x x x

x x

 

 

  

 
 

 v0 = 1 
9

10

0.000334 0.439223sin( ) 0.341831 10 sin(2 )

0.000135sin(3 ) 0.499829 10 sin(4 )

x x

x x

 

 





   

  
 

0.5 v0 = x 
0.000504 0.439328sin( ) 0.000161sin(2 )

0.000147sin(3 ) 0.000011sin(4 )

x x x

x x

 

 

  

 
 

 v0 = x4 
40.000504 0.282891sin( ) 0.000153sin(2 )

0.000152sin(3 ) 0.000010sin(4 )

x x x

x x

 

 

  

 
 

 v0 = 1 
9

10

0.000159 0.282734sin( ) 0.244914 10 sin(2 )

0.000079sin(3 ) 0.257808 10 sin(4 )

x x

x x

 

 





   

  
 

1.0 v0 = x 
5

0.000218 0.282796sin( ) 0.000069sin(2 )

0.000083sin(3 ) 0.280945 10 sin(4 )

x x x

x x

 

 

  

  
 

 v0 = x4 
4

5

0.000242 0.282891sin( ) 0.000153sin(2 )

0.000084sin(3 ) 0.284982 10 sin(4 )

x x x

x x

 

 

  

  
 

 v0 = 1 
9

10

0.000081 0.208485sin( ) 0.191068 10 sin(2 )

0.000057sin(3 ) 0.174173 10 sin(4 )

x x

x x

 

 





   

  
 

1.5 v0 = x 
5

0.000131 0.208503sin( ) 0.000041sin(2 )

0.000058sin(3 ) 0.124247 10 sin(4 )

x x x

x x

 

 

  

  
 

 v0 = x4 
4

5

0.000154 0.208555sin( ) 0.000034sin(2 )

0.000058sin(3 ) 0.132682 10 sin(4 )

x x x

x x

 

 

  

  
 

 v0 = 1 
9

10

0.000068 0.165098sin( ) 0.156693 10 sin(2 )

0.000043sin(3 ) 0.131604 10 sin(4 )

x x

x x

 

 





   

  
 

2.0 v0 = x 
6

0.000106 0.165115sin( ) 0.000033sin(2 )

0.000044sin(3 ) 0.802496 10 sin(4 )

x x x

x x

 

 

  

  
 

 v0 = x4 
4

6

0.000085 0.161561sin( ) 0.000018sin(2 )

0.000044sin(3 ) 0.607319 10 sin(4 )

x x x

x x
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Table 3. The J0(v) and 2

2

(0,1)L
v  values for some different initial elements and some α’s 

We can see from tab. 3 that the values of the cost functional and the minimizing el-

ements in the Example 2 are close to each other.  

Table 4. Some optimal controls for some different initial elements and some α’s 

α v0 v* 

 v0 = 0 
11

10 10

0.890821sin( ) 0.507572 10 sin(2 )

0.822976 10 sin(3 ) 0.592222 10 sin(4 )

x x

x x

 

 



 

  

   
 

0.1 v0 = x2 
20.003317 0.889662sin( ) 0.000969sin(2 )

0.000672sin(3 ) 0.000527sin(4 )

x x x

x x

 

 

  

 
 

 v0 = ex 
0.001109 0.888533sin( ) 0.000561sin(2 )

0.000865sin(3 ) 0.000301sin(4 )

xe x x

x x

 

 

  

 
 

 v0 = 0 
10

10 10

0.620219sin( ) 0.144111 10 sin(2 )

0.514902 10 sin(3 ) 0.374614 10 sin(4 )

x x

x x

 

 



 

  

   
 

0.5 v0 = x2 
20.000531 0.620073sin( ) 0.000082sin(2 )

0.000107sin(3 ) 0.000084sin(4 )

x x x

x x

 

 

  

 
 

 v0 = ex 
0.000201 0.619843sin( ) 0.000056sin(2 )

0.000156sin(3 ) 0.000054sin(4 )

xe x x

x x

 

 

  

 
 

 v0 = 0 
10

10 10

0.449519sin( ) 0.138580 10 sin(2 )

0.353502 10 sin(3 ) 0.258358 10 sin(4 )

x x

x x

 

 



 

  

   
 

1.0 v0 = x2 
20.000218 0.449481sin( ) 0.000022sin(2 )

0.000043sin(3 ) 0.000034sin(4 )

x x x

x x

 

 

  

 
 

 v0 = ex 
0.000084 0.449382sin( ) 0.000015sin(2 )

0.000065sin(3 ) 0.000022sin(4 )

xe x x

x x

 

 

  

 
 

 v0 = 0 
10

10 10

0.352512sin( ) 0.118530 10 sin(2 )

0.269790 10 sin(3 ) 0.197570 10 sin(4 )

x x

x x

 

 



 

  

   
 

 The initial element v0 = 0 The initial element v0 = x2 The initial element v0 = ex 

α J0(v) 2

2

(0,1)L
v  J0(v) 2

2

(0,1)L
v  J0(v) 2

2

(0,1)L
v  

0.1 0.00486772 0.39678183 0.00485915 0.39686795 0.00485915 0.39686795 

0.5 0.05890076 0.19233588 0.05888349 0.19237043 0.05888349 0.19237043 

1.0 0.12374806 0.10110339 0.12372810 0.10105390 0.12372809 0.10105392 

1.5 0.17120556 0.06213243 0.17119142 0.06214186 0.17119130 0.06214194 

2.0 0.20589454 0.04203259 0.20588304 0.04208350 0.20588282 0.04203845 
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α v0 v* 

1.5 v0 = x2 
20.000131 0.352489sin( ) 0.000011sin(2 )

0.000024sin(3 ) 0.000019sin(4 )

x x x

x x

 

 

  

 
 

 v0 = ex 
50.000058 0.352414sin( ) 0.822448 10 sin(2 )

0.000043sin(3 ) 0.000015sin(4 )

xe x x

x x

 

 

   

 
 

 v0 = 0 
10

10 10

0.289939sin( ) 0.101698 10 sin(2 )

0.218303 10 sin(3 ) 0.160043 10 sin(4 )

x x

x x

 

 



 

  

   
 

2.0 v0 = x2 
2 50.000085 0.289927sin( ) 0.553812 10 sin(2 )

0.000015sin(3 ) 0.000012sin(4 )

x x x

x x

 

 

   

 
 

 0
xv e  

5

5

0.000034 0.289885sin( ) 0.412020 10 sin(2 )

0.000024sin(3 ) 0.881472 10 sin(4 )

xe x x

x x

 

 





   

  
 

Conclusion  

As it is known, the vibration problems of beams can be used to describe many engi-

neering phenomena, in particular, for building, mechanical and aircraft engineering. It is im-

portant to study optimal control of the initial condition for the beam. This paper investigates 

the theoretical and numerical studies regarding the controllability of the initial condition in the 

beam problem. The gradient of the cost functional to be minimized is derived via an adjoint 

problem. In order to find numerical solution of the problem (1)-(2), we propose an iteration 

process based on the gradient of the cost functional. In the numerical examples, we show that 

the regularized parameter   has an important role in minimizing process. When 0,   there 

may be two different solutions to the optimal control problem (1)-(2). The uniqueness and 

stability of the optimal solution for the problem (1)-(2) are achieved for 0.   
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