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In this study, we consider an optimal control problem for an Euler-Bernoulli
beam equation. The initial velocity of the system is given by the control function.
We give sufficient conditions for the existence of a unique solution of the hyper-
bolic system and prove that the optimal solution for the considered optimal con-
trol problem is exists and unique. After obtaining the Frechet derivative of the
cost functional via an adjoint problem, we also give an iteration algorithm for the
numerical solution of the problem by using the Gradient method. Finally, we fur-
nish some numerical examples to demonstrate the effectiveness of the result ob-
tained.
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Introduction

Vibration theory has many research applications in the area of applied science, espe-
cially, in fields of building, mechanical and aircraft engineering [1]. So it should be profitable
to study the control problems associated with the beam systems. Various optimal control
problems for the beam have been considered recently in the literature. The problems of con-
trolling the coefficient function in the beam equation have been investigated in [2-5]. The
boundary control problems for the beam system have been studied in [6-11]. When the control
function is the source term, there have been some control problems [12-16].

In PDE, the problems of optimal control with the initial condition are studied for the
different cost functional. There are some studies about the initial control for parabolic prob-
lem [17-19] and for hyperbolic problem [20-22]. Sarac [22] has controlled the initial velocity
for wave equation uy +a2uXX = f(x,t) with homogeneous Neumann boundary conditions by
using the following cost functional:

I |
J, (V)= j[u(x,T;v) - y(x)]2 dx + ajvz(x)dx
0 0

Kowalewski [20] has studied the control problem with the initial condition for the
hyperbolic problem:
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Uy +{ i (-1)“a, D% +1Ju +u(x,t—h) = f(xt), (x,t) € Q(0,T)

‘a‘:O
u(xt) =duu(x,t’), xeQ, t'e[-h0)
u(x,00=0, u,(x,0)=v, xeQ
u(x,t)=0, xeI, te(0,T)

by minimizing the performance functional:

J(v) = ﬂi.ﬂu(x,T;v) - zd|2dx+/12.[ N (v)vdx
Q Q

where 4,4, >0 with 4 +4, >0; z4 e H(Q) is a given element; N:H°(Q) > H°(Q) isa
positive linear operator. Kowalewski [21] has controlled the initial conditions for a linear hy-
perbolic system in which multiple time delays appear in the state equation.
In this paper, we consider a beam system given by:
Uy + Uy = F(X 1), (X,1) € Q:i=(0,1)x(0,T]
u(x,0) =w(x), u(x,0)=v(x), xe(0,I)
u(0,t)=0, u,(0,t)=0, te(0,T]
u(lt)=0, u,(,t)=0, te(0,T]

M)

where the function F(x, t) is the external load, w(x) is the initial displacement, v(x) is the ini-
tial velocity and | is the length of the beam. The deflection of the beam is denoted by u(x t)
in the position x along beam and time t. We assume that F e LZ[O T; L2(O )], weH (0 )]
are given functions, v e L2 (0,1) is the control function and U =u(x,t; v) is the solution of the
problem (1) at (x, t) corresponding to a given control v .

Now, we recall an admissible controls set Vo :={ve*(0,1):|v] . oy SVe) @ 2
closed and convex subset of Hilbert space L2(0,1), where vC is a constant. The inner product
and norm in this set will be defined in the same way as on L?(0,1).

We shall now formulate an optimal control problem whose solution gives unknown
initial velocity v. The cost functional is given by:

|
3o, ()= 4 [l T :v) =y, ()1 dx
| | )
+A, j[ut (X, T :v) =y, ()P dx + ogJ‘v2 (x)dx
0 0

where 4,4, >0 with 4 +4, >0; the functions y;,y, € L(0,1) are given target functions;
a >0 is a regularization parameter ensures the uniqueness of the solution.

The aim of this paper is to find the initial velocity from the set Vi that minimizes
the distances between the solutions u(x, T),u,(x,T) and desired target functions Y, (X), Y,(X) .
In other words, our objective is solve the following optimal control problem:

J, (%)= man L (V) 3)

ad
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The most commonly used beam models are based on Euler-Bernoulli beam theory.
So the control of the initial conditions for Euler-Bernoulli beam systems is an important prob-
lem. This study makes an important contribution to the subject because we control one of the
initial conditions of a beam problem and focus on numerical computations.

Solvability of the optimal control problem

Firstly, we give solvability of the problem (1) for given functions
F e L’[0,T;L2(0,1)], we H?(0,1) and the control function veV,,. The solution of the
problem (1) is understood in the weak sense. The problem (1) has a unique weak solution
uel?[0,T;V(0,)],u, € L’[0,T;L%(0,1)], u, € L?[0,T;H2(0,1)] where:

V(0,1):={f eH2(0,1): f(0)=0, f(I)=0} [23-25].

If we give an increment Av eV, to the control function v such that v+Av eV,
the difference function Au=Au(x,t;v) is the solution of the following difference prob-
lem:

AUy + AUy, =0, (X,1)eQ

Au(x,0) =0, Au(x,0)=Av, xe(0,l)
Au(0,t)=0, Au,(0,t)=0, te(0,T]
Au(l,t)=0, Au,(l,t)=0, te(0,T]

The following lemma will be used in the derivation of Gradient of the cost function-

(4)

al.
Lemma 1. Let Au be the weak solution of the hyperbolic problem (4) and
F e L?[0,T;L2(0,1)], we H?(0,1) and v eV,, . We have the following estimates:

[T, oy < T2V gy 7V Ve ©
and
lAu, (X’T)"iZ(o,n < ||AV"i2(O,I) » YV EVy (6)
Let’s rewrite the cost functional:
3,(v) = 3o (v) + a|v[, on
where

| |
o) = A (T :v) =y, 00T dx + 2, [T (6, T :v) =y, (0l
0 0

Using the estimates (5) and (6) and applying the Cauchy-Schwarz inequality, for in-
crement AJy (V) =Jo(V+Av)—J,y(v) of the functional Jy(v), we get the following inequality:

Ao () £ GIIAV]s gy + 1AV ] 0

where c¢1 depends on the constants A1, A2 and the final time T. The inequality (7) implies that
the functional Jo(v) is continuous (so lower semi-continuous). Also, the functional Jo(V) is
bounded from below since Jo(v) > 0 for any veV,y. The admissible control set Va4 is a
non-empty closed, bounded and convex subset of the Sobolev space L2(0,1). In view of
Weierstrass’s existence theorem, the optimal control problem (1)-(2) has a minimum for
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a=0. Moreover, the regularization parameter « >0 on the functional (2) establishes the
uniqueness and continuous dependence to the solution.
Using the Lagrange multipliers method, we obtain the following adjoint problem:

Vit T Woox = 0, (x,HQ

w(X,t) ==22[u (X, T;v) - ¥, (x), x(0,1)

p (X T)=24[u(x,T;v) - y1(X)], xe(0,1) ®)
yON=0, 1, O1)=0, te(1]

w()=0, w,(,t)=0, te(0t]

Now, one can get the Frechet derivative of the cost functional by using the adjoint
approach. The first variation AJ,, (V) =J,(V+Av)—J,(v) of the J,(v) can easily written:

|
A, (V)= @lZ[u(x,T;v) — Y1 (X) ]Au(x,T;v)dx + 4 ||Au(x,T)||i2(0‘|) +

|
+, jz[ut (X, T;v) = Y1 00 ] Au (X, T v)dx + 4, | Au, (x,T)||i2 on* 9)
0

|
2
+2a_([v(x)Av(x)dx +a ||Av|||_2(0'|)

The AJ,(v) also rewritten in The terms of the solution of the adjoint problem:

A3, (V) = (= (X, 0;v) +2v(X), AV(X)) 2 ) +
(10)

AT, g +HIAW T o + AV

((B))] .1

The Lemma 1 implies that the second term and third term in the right-hand side of
the eq. (10) is bounded by o[||Av||i2 o] - Taking into account the definition of Frechet differ-
ential at veV,y, we have: '

3., (V) == (X,0,V) + 2av(X) (11)

Here one can point out that the Frechet derivative of the cost functional can be ob-
tained via the solution of the adjoint problem.

Numerical examples and results

We consider the numerical schemes for optimal control problem (1)-(2) after the
theoretical results.

The regularization parameter « has a main role in minimization process. We per-
form two numerical examples to show the efficiently of our algorithm for different « ’s val-
ues.

Let’s state an iteration procedure based on the previous analysis for a numerical ap-
proximation of the optimal control. This procedure is described as:

Step 1. Choose the initial value vy €Vyq

Step 2. Solve the state problem (1) in the weak sense and get the un

Step 3. Solve the adjoint problem (8) and find the v/,
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Step 4. Calculate the gradient J; (v,,) from the formula (11)
Step 5. Find the new element v,,,; by using the following minimizing sequence;

Vo = ﬁn‘]a (V ) (13)

where S is the parameter of the algorithm assures that J,[v, — 3,J a (v)l<J, (v,).
This iteration is stopped when the stopping criteria J,, (v,) —J, (V,,1) <& is satisfied
The stopping parameter ¢ is a positive constant). If J,(v,) =0, then v, is a station-
ary element for the minimizing problem and the iteration is stopped.
Example 1. Consider the following problem on the domain € :(0,1)(0,2]:

Uy + Uy = [-72 (X = 2x3 + X) + 24]sinzt, (x,1)eQ
u(x,0)=0, u,(x,0)=v(x) xe(0,1)

(14)
uO,5)=0, uy(0,)=0, te(0,2]
ULY =0, U, (Lt)=0, te(0,2]
Find V. €V, such that:
3.=J, (%) =mind,(v)
VeV,
where
1 1
J,(v)= j[u(x, 2;v) —0]%dx + I[ut (X, 2,v) — 7(x* =23 + x)]Pdx +
0 0 (15)

1
+ajv2(x)dx

Firstly, let us choose « =0 in (15) and take:
1

1
Jo(v) = j[u(x, 2;v) —0]%dx + J‘[ut (x,2;v) — z(x* = 2x3 + x)]?dx
0 0

In thls case, the minimum value of J,(v) is Jo =0 and the optimal solution is
Vi = 7(x* = 2x3 + x). Choosing S, =0.05 and the initial element v, =10x, we get the value
of the cost functional as Jg(Vyq) =0.028770, A
the norm of the distance between the approxi-
mate solution V,y, and the element V. as 10
V00 = V]2 9.1y = 2-496586 after 200 iterations. /
For anot]her initial element v, =7cos(x), ® /
we get Jo(Vpgo) =0.025315 and /
V00 = V]l 2 9.1y = 2.080566 after 200 iterations. \
We plot the graphs of these solutions obtained 4| \
by starting the initial element v, =10x and \
Vg =7cos(x) in fig. 1. 2 \ ) L
It can be seen from fig. 1 that the functions N >
obtained for different initial elements are quite  ° 02 04 0B 08 1
different. Moreover, the values of the cost func-
tional for these elements are very close and

A J

Figure 1. Graphs of the solutions for the initial
element vo = 10x and vo = 7¢c0s(X)
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quite small. In that case, the optimal control problem is ill-posed when « =0.

Now, we consider the optimal control groblem (14)-(15) when o >0. If we take
B, =0.05 and the stopping criteria ¢ =0.1x10" in the numerical algorithm, then we can
get optlmal control functions for different values of the regularlzatlon parameter a. In tab.
1, we give the values of the functional J,(v) and the norm ||v|| 0D obtained by different
initial elements for different values of the regularization paramet r a

It can be seen from tab. 1 that the numerical solutions obtained from three different
initial elements are close to each other.

In tab. 2, we obtain some optimal solutions of the problem (14)-(15) by using the
iteration process.

Table 1. The Jo(v) and HVHZLQ (o Vvalues for some different initial elements and some o’s

The initial element vo = 1 The initial element vo = x The initial element vo = x*

2 2 2
a Jo(v) Vi2(0g) Jo(V) Vo) Jo(v) Viz(0g)

0.1 0.00773909 | 0.31164341 | 0.00773909 | 0.31164339 | 0.00773909 | 0.31164339
0.5 0.05999964 | 0.09664608 | 0.05999968 | 0.09664601 | 0.05999976 | 0.09664584
1.0 0.09939388 | 0.04002670 | 0.09993943 | 0.04002626 | 0.09939508 | 0.04002550
15 0.12154265 | 0.02175446 | 0.12154304 | 0.02175420 | 0.12154438 | 0.02175331
2.0 0.13550151 | 0.01364301 | 0.13550225 | 0.01364268 | 0.13550420 | 0.01364170

Example 2. If we take the domain Q:=(0,1)x(0,1] in the problem (1)-(2), we write
the following problem:

1 1 1
J, (V)= _[[u(x,l; V) —3sin zx]?dx + _f[ut (x,2;v) —3sin zx]?dx + ocjv2 (x)dx (16)
0 0 0

subject to:

Uy +Ug =SINZX[7* (% +1+1)+2], (x,1)eQ
u(x,0)=sinzx, u,(x,0)=v(x), xe(0,2)
u(0,t)=0, u,(0,t)=0, te(0,1]

u@Lt)=0, u,(@t)=0, te(0,1]

17)

Rewrite the cost functional:

J,(V)=Jy(V) + O‘HV"iz(o,l)

where
1 1
Jo(v) = j[u(x,l;v) —3sinzx]?dx + j[ut (x,L;v) — 3sin zx]?dx

In this example we choose the related parameter S, =0.05 and the stopping param-
eter =0.1x1078, We give the values Jo(v) and ||v|| obtained by different initial ele-
ments for dlfferent o in tab. 3 and the optimal solutions for these initial elements in tab. 4.
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Table 2. Some optimal controls for some different initial elements and some a’s

o Vo V=
) 0.002131+ 0.786769sin(7zx) — 0.504424 x107° sin(27x) +
Vo =
+0.000075sin(37x) —0.221025x 107 sin(47x)
o1 0.003091x + 0.787515sin(zx) + 0.000984sin(27x) +
. Vo =X
0 +0.000279sin(37x) + 0.000208sin(47x)
- 0.003218x* + 0.788915sin(rx) + 0.000713sin(27x) +
° +0.0003265sin(37x) + 0.000199sin(47X)
. 0.000334 + 0.439223sin(zx) — 0.341831x 10 sin(27zx) +
Vo =
+0.000135sin(37x) — 0.499829 x 10 sin(47x)
05 0.000504x + 0.439328sin(zx) + 0.000161sin(27zx) +
. Vo =X
0 +0.000147sin(37X) + 0.000011sin(477x)
Vo= xt 0.000504x* + 0.282891sin(zx) + 0.000153sin(27zx) +
0=
+0.0001525in(37x) + 0.000010sin(47X)
. 0.000159 + 0.282734sin(zx) — 0.244914 x10~°sin(27x) +
Vo =
+0.000079sin(37x) —0.257808 x10 % sin(47x)
Lo 0.000218x + 0.282796sin(7rx) +0.000069sin(27X) +
. Vo =X
0 +0.000083sin(37x) + 0.280945 x10~°sin(47X)
. 0.000242x* + 0.282891sin(zx) + 0.000153sin(27zx) +
Vo =X
+0.000084sin(37x) + 0.284982 x 10~ sin(47X)
- 0.000081+ 0.208485sin(7rx) — 0.191068x 10~ sin(27zx) +
0 =
+0.0000575in(37x) — 0.174173x 107 sin(47x)
L5 0.000131x + 0.208503sin(x) + 0.000041sin(27X) +
. Vo =X
° +0.000058sin(37X) + 0.124247 x 10~ sin(47X)
. 0.000154x* + 0.208555sin(7x) + 0.000034sin(27x) +
Vo =X
+0.000058sin(37x) +0.132682 x 10~ sin(47x)
) 0.000068 + 0.165098sin(zx) — 0.156693x 107 sin(27x) +
Vo =
+0.000043sin(37x) — 0.131604 x 10 % sin(47x)
20 0.000106x + 0.165115sin(zx) + 0.000033sin(27x) +
. Vo =X
0 +0.000044sin(37X) + 0.802496 x 10° sin(47x)
. 0.000085x* + 0.161561sin(xzx) + 0.000018sin(27x) +
Vo =X

+0.000044sin(37X) + 0.607319 x10°° sin(4x)
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Table 3. The Jo(v) and HVHZLQ values for some different initial elements and some a’s

(0.1)
The initial element vo = 0 The initial element vo = X2 The initial element vo = e*

2 2 2
a Jo(v) HVHU (0 Jo(v) HVHLZ(o,l) Jo(V) HVHB (01

0.1 0.00486772 | 0.39678183 | 0.00485915 | 0.39686795 | 0.00485915 | 0.39686795
0.5 0.05890076 | 0.19233588 | 0.05888349 | 0.19237043 | 0.05888349 | 0.19237043
1.0 0.12374806 | 0.10110339 | 0.12372810 | 0.10105390 | 0.12372809 | 0.10105392
15 0.17120556 | 0.06213243 | 0.17119142 | 0.06214186 | 0.17119130 | 0.06214194
2.0 0.20589454 | 0.04203259 | 0.20588304 | 0.04208350 | 0.20588282 | 0.04203845

We can see from tab. 3 that the values of the cost functional and the minimizing el-
ements in the Example 2 are close to each other.

Table 4. Some optimal controls for some different initial elements and some a’s

a Vo V*
0 0.890821sin(7x) —0.507572 x10 sin(27x) +
Vo =
+0.822976 x107sin(37x) — 0.592222 x 10" sin(47x)
01 oz 2 0.003317x2 + 0.889662sin(rrX) -+ 0.000969sin(27X) —
' ’ —0.000672sin(37x) + 0.000527 sin(4zx)
Vo = &% 0.001109e* + 0.888533sin(rx) + 0.000561sin(2zx) —
0=
—0.000865sin(37x) + 0.000301sin(47X)
0 0.620219sin(X) +0.144111x10 " sin(2zx) +
Vo =
+0.514902 x107sin(37x) — 0.374614 x 10 sin(47x)
05 o= 2 0.000531x? + 0.620073sin(rx) + 0.000082sin(27x) —
. 0 -
—0.000107sin(37x) +0.000084sin(47x)
o et 0.000201e* + 0.619843sin(zx) + 0.0000565in(27X) —
0 —0.0001565in(37X) + 0.000054sin(47x)
0 0.449519sin(X) + 0.138580 x100sin(27x) +
Vo =
+0.353502 x 10~ sin(3x) — 0.258358 x 10 sin(47X)
10 o= 2 0.000218x? + 0.449481sin(zx) + 0.000022sin(27X) —
' ° —0.000043sin(37x) + 0.000034sin(47x)
Vo= &% 0.000084e* + 0.449382sin(7zx) + 0.000015sin(2zX) —
0 -
—0.000065sin(37x) + 0.000022sin(47X)
0 0.352512sin(7x) +0.118530 107 sin(27x) +
Vo =
+0.269790 x10"sin(37x) — 0.197570 x 10" sin(47x)
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o Vo V*
15 oz 2 0.000131x? + 0.352489sin(zx) + 0.000011sin(27X) —
' ° —0.000024sin(37x) + 0.000019sin(47x)
Vo = & 0.000058e* + 0.352414sin(rrx) + 0.822448 x 107> sin(27X) —
0=
—0.000043sin(37x) +0.000015sin(47x)
0 0.289939sin(7x) +0.101698 x10 P sin(2zx) +
Vo =
+0.218303x107%sin(37x) — 0.160043 x10 " sin(47x)
20 Vo = x2 0.000085x2 + 0.289927sin(rx) + 0.553812x107° sin(27x) —
. 0—
—0.000015sin(37x) + 0.000012sin(47xX)
« 0.000034e* +0.289885sin(7rx) +0.412020 x 10~ sin(27x) —
V=6
0 ~0.000024sin(37X) +0.881472 x 10 5 sin(47x)
Conclusion

As it is known, the vibration problems of beams can be used to describe many engi-
neering phenomena, in particular, for building, mechanical and aircraft engineering. It is im-
portant to study optimal control of the initial condition for the beam. This paper investigates
the theoretical and numerical studies regarding the controllability of the initial condition in the
beam problem. The gradient of the cost functional to be minimized is derived via an adjoint
problem. In order to find numerical solution of the problem (1)-(2), we propose an iteration
process based on the gradient of the cost functional. In the numerical examples, we show that
the regularized parameter « has an important role in minimizing process. When o =0, there
may be two different solutions to the optimal control problem (1)-(2). The uniqueness and
stability of the optimal solution for the problem (1)-(2) are achieved for « > 0.
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