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Introduction  

Fractional differential equations have recently proved to be valuable tools in the 

modelling of many phenomena in various fields such as mathematics, physics, biology, chem-

ical physics, biomedical sciences, fluid flows, and finance, as well as other disciplines [1-5]. 

In the last few decades, many researchers have presented many fractional derivative defini-

tions. One of them conformable derivative, Khalil et al. [6] have suggested this fractional de-

rivative. Unlike the other fractional derivatives, this definition satisfies almost all the re-

quirements of standard derivatives. As a new research field, there are many investigations 

with this conformable fractional derivative [6-10]. Although research on the oscillation of var-

ious equations including differential equations, difference equations, dynamic equations on 

time scales and their fractional generalizations has been a hot topic in the literature [11-25], 

we notice that very little attention is paid to oscillation of linear/non-linear conformable frac-

tional differential equations [26-28]. 

In this study, we consider the following conformable fractional differential equation 

with damping term: 

 ( ) ( ) ( ){ ( ) [ ( )] ( )} ( ) [ ( )] ( ) ( ) ( ) 0r t x t x t p t x t x t q t x t       (1) 

where 0 1.   

A solution of eq. (1) is called oscillatory if it has arbitrarily large zeros, otherwise, it 

is called non-oscillatory. Equation (1) is called oscillatory if all of its solutions are oscillatory. 

Throughout this study, we will use the following conditions: 

1( )H  ( )r t 0([ , ), )C t R   such that ( )r t k  for some 0k   

2( )H  ( )p t 0([ , ), )C t R  such that ( ) 0p t   

3( )H   ( , ), 0 ( )C R R x m   for some positive constant m and for all 0x   

4 0( ) ( ) ([ , )H q t C t   )R
for 0.t t  

–––––––––––––– 
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Preliminaries 

In this section, we present some background materials for the conformable fractional 

theory.  

Definition 1. [26] The left conformable fractional derivative starting from t0 of a 

function 0:[ , )f t R  of order α with 0 1   is defined by: 

 
0

1
( ) 0

0

[ ( ) ] ( )
( )( ) ( ) limt

f t t t f t
f t f t














  
 T  

when 1,   this derivative of ( )f t coincides with '( ).f t  If 
0

( )( )t f t
T exists on 0 1( , )t t then: 

 
0

0

( )
0( )( ) lim ( )t

t t
f t f t 


T  

Definition 2. [26] Let (0, 1]  . Then the left conformable fractional integral of or-

der α starting at t0 is defined by: 

 
0 0

0 0

1
0( )( ) ( ) ( )d : ( )d

t t

t t

t t

f t s t f s s f s s    I  

If the conformable fractional integral of a given function f exists, we call that f is  
α-integrable.  

Lemma 1. [7] If (0, 1]   and 1
0([ , ), ),f C t R  then, for all 0 ,t t  we have: 

 
0 0 0 00( )( ) ( ) ( ) and ( )( ) ( )t t t tf t f t f t f t f t     I T T I  

Lemma 2. [6]   
1) 

0 0 0
( ) ( ) ( )t t taf bg a f b g    T T T for real constant ,a b  

2) 
0 0 0
( ) ( ) ( )t t tfg f g g f   T T T  

3) 
0
( )p p

t t p T t  for all p 

4) 
0 0 0

2( / ) [ ( ) ( )]/t t tf g g f f g g   T T T  

5) 
0
( ) 0,t c T  where c is a constant.  

Lemma 3. [8] Let 0 1, : [ , )f g t t R  be two functions such that fg is differentiable. 
Then 

 
1 1

1

0 00

0 0

( ) ( )( ) ( )d ( ) ( ) | ( ) ( )dt

t t

t tt

t t

f s g s s f s g s g s f s s      

Main results 

In this section, we will present some new oscillation theorems for conformable frac-

tional differential equation. 

Theorem 1. Suppose that 1 4( ) ( )H H  hold. If 

 
0

0

1 1
lim d

( )

t

t
t

t

s
m r s





 
 

  
  
  (2) 

and 
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0

0

2 ( )
lim ( ) d

4 ( )

t

t
t

t

mp s
q s s

r s





 
   

 
  (3) 

then every solution of eq. (1) is oscillatory.  

Proof. Let x(t) be a non-oscillatory solution of (1) on 0[ , ).t   Without loss of gener-

ality, we assume that x(t) is an eventually positive solution of eq. (1). Then we define: 

 
( )( ) [ ( )] ( )

( )
( )

r t x t x t
t

x t


    

for 0.t t  Then we have: 

  
       

2

[ ( ) ( ( )) ( )] ( ( )) [ ( ) ( ( )) ( )]( ( ))
( ) .

( )

r t x t x t x t r t x t x t x t
t

x t

  
  




   

From (1), we get: 

 

( ) ( ) ( )
( )

2

( ) 2

( ) [ ( )] ( ) { ( ) [ ( )] ( )}[ ( )]
( ) ( )

( ) ( )

( ) [ ( )] ( ) ( )
( )

( ) ( ) [ ( )]
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p t x t x t t
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x t r t x t

  
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

 


 



   

  

 

thus 

 

2
( )

2

( ) ( )
( ) ( ) ( )

( ) ( ) [ ( )]

( ) ( )
( ) ( )

( ) ( )

p t t
t t q t

r t r t x t

p t t
t q t

r t mr t

 
 






    

   

 

Thus, for every t, T with 0 ,t T t   we have:  

 
0 0 0

( ) 2( ) 1
( )d ( ) ( ) d ( )d

( ) ( )

t t t

t t t

T T T

p s
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then 
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4 ( )( ) 2 ( )
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p s
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m mp s
T s p s s q s s

r smr s r s

 

 

   

 

 
     

 

   
       

    

 

 

 

By using the (3) implies there exists 1 0;T T t   such that: 

 
0

1

2

( ) ( )
( ) d

( ) 2 ( )

t

t

T

s m p s
t s

mr s r s




 
  

  
  
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If we define a function:  

 
0

1

2

( ) ( )
( ) d

( ) 2 ( )

t

t

T

w s mp s
N t s

mr s r s


 

  
  
  (4) 

then ( ) ( ) 0t N t    for 1.t T  From 2( )H and eq. (4), we have: 

 

2

( )

2 2

( ) ( )
( )

( ) 2

( ) ( )

( ) ( )

w s m p s
N t

mr s r

w t N t

mr t mr t


 

   
  

 

 

or  

 
( )

2

1 ( )

( ) ( )

N t

mr t N t



  (5) 

Integrating both sides of the (5) from T1 to t, we have: 

 

1
1 1

1 1 1 1 1
d

( ) ( ) ( ) ( )

t

s

T
m r s N T N t N T

     (6) 

And letting t  in (6): 

 

1
1

1 1 1
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( ) ( )

t

s
t

T

s
m r s N T


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 
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 
  

which is a contradiction to eq. (2). This completes the proof of the theorem.  

Theorem 2. Let conditions 1 4( ) ( )H H hold. Assume that there exist a positive func-

tion 0[ , )g C t   such that: 
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
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
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


 (8) 

then every solution of eq. (1) is oscillatory.  

Proof. Let ( )x t  be a non-oscillatory solution of (1) on 0[ , ).t   Without loss of gen-

erality, we assume that ( )x t is an eventually positive solution of eq. (1). Then we define: 

 
( )( ) [ ( )] ( )

( ) ( )
( )

r t x t x t
t t

x t


    
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for 0.t t  Then from the conditions, we have: 
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Now for 0[ , ),t t   defining: 
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we will have 
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That is:  
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Thus, for every t, T with 0 ,t T t   we get: 
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From (9) and (10), 1( )H , 2( )H and (H4), we get: 
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Then by using (8), we get: 
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Define a function ( )P t for t T by:  
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Using the 2( ),H  we have ( ) ( ) 0.O t P t   Then we get: 
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Integrating both sides of the previous inequality from T to t, we obtain: 
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Letting ,t   we get a contradiction to (7). This completes the proof of the theo-

rem.  

Illustrative example 

To confirm our obtained results in the previous section, we present herein some nu-

merical examples. 

Example 1.  

 
 
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1/7
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1 1
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 
 (11) 
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for 1.t   This corresponds to eq. (1) with 0 1,t  1/7,   4( ) 1/ ,r t t  
4

( ) ,xx e   
2( ) (1/ ),p t t   and ( ) .q t t  So we have ( ) 1r t k  and ( ) 1 .x m    Then: 
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Thus, eq. (11) satisfies the inequalities (2) and (3) in Theorem 1 and is oscillatory.  
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