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In this study, we investigate the oscillatory properties of solutions of a class of con-
formable fractional generalized Lienard equations. By using generalized Riccati tech-
nique, we present some new oscillation results for the equation. Illustrative examples 
are also given. 
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Introduction  

Recently fractional differential equations have been applied to the modeling of many 
phenomena in such diverse fields as chemistry, physics, engineering, mechanics, medical sci-
ences, economics, and finance [1-3]. Additionally, many researchers have proposed the frac-
tional derivative definitions. The most common definitions among them are Riemann-Liou-
ville and Caputo fractional derivative definitions. Almost all existing fractional derivatives do 
not satisfy the basic properties of classical derivative. Khalil et al. [4] have suggested con-
formable fractional derivative. Unlike the other fractional derivatives, this definition satisfies 
almost all the requirements of standard derivative. Research on oscillation of various equa-
tions including differential equations, dynamic equations on time scales and their fractional 
generalizations has been a hot topic in [5-20]. In these investigations, we notice that very little 
attention is paid to oscillation of conformable fractional differential equations [21-24]. 

In this study, we investigate the following conformable fractional differential equa-
tion: 

 (2 ) ( ) 2 ( )( ) [ ( )][ ( )] [ ( )] ( ) [ ( )] 0x t f x t x t g x t x t h x t  + + + =  (1) 

where 0 1,  f, g,and h are continuously differentiable functions on R. 
A solution of eq. (1) is called oscillatory if it has arbitrarily large zeros, otherwise it 

is called non-oscillatory. Equation (1) is called oscillatory if all of its solutions are oscillatory. 

Preliminaries 

In this section, we give some necessary background materials for the conformable 
fractional theory.  

Definition 1. [19] The left conformable fractional derivative starting from t0 of a 
function 0:[ , )f t R → of order with 0 1   is defined by: 

–––––––––––––– 
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Definition 2. [19] Let (0,1].   Then the left conformable fractional integral of or-
der α starting at t0 is defined by: 
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If the conformable fractional integral of a given function f exists, we call that f is  
α-integrable.  

Lemma 1. [23] If (0,1]   and  1
0([ , ), ),f C t R  then, for all 0 ,t t we have: 
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Lemma 3. [24] Let 0 1, :[ , )f g t t R→ be two functions such that fg is differentiable. 
Then: 
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Oscillation results 

In this section, we present some new oscillation results for the equation.  
Theorem 1. If: 
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then every solution of eq. (1) is oscillatory.  
Proof. Let x(t) be a non-oscillatory solution of eq. (1). Without loss of generality, we 

may assume that x is an eventually positive solution of (1). We define: 
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Thus, for every t, T with 0 ,t T t  we have: 
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By using the (3) implies there exists 1 0 ;T T t  such that: 
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If we define a function: 
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Then ( ) ( )t A t  for 1.t T  So, we get: 
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We obtain:  
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Integrating both sides of the (3) from T1 to t, we have: 
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Letting t → in (5): 
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which is a contradiction to eq. (2). This completes the proof of the theorem. 
Theorem 2. If: 

 
0

2

d [ ( )]
d

[ ( )] [ ( )]lim d
[ ( )]4 [ ( )] [ ( )]

t

tg x st
T x

g x s h x s
s

g x sg x s f x s



→

 
 − = 
 + 


{ }
 (6) 

and  

 
0

1

d [ ( )]lim [ ( )] [ ( )] d
d

t

t
t

T

g x s
g x s f x s s

x



→

 
  − + =  

  
 
  (7) 

then every solution of (1) is oscillatory.  

Proof. Let x(t) be a non-oscillatory solution of eq. (1). Without loss of generality, we 
may assume that x is an eventually positive solution of (1). We define: 
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Then we have:  
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Thus, for every t, T with 0 ,t T t  we get: 
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From (6) and there exists 1 0 ;T T t   such that: 
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If we define new a function:  

 
0

1

1/2

d [ ( )] 1/2
d

d [ ( )] [ ( )]( ) [ ( )] [ ( )] ( ) d
d 2 [ ( )] [ ( )]

t

tg x s
T x

g x s g x s
B T g x s f x s s s

x g x s f x s


  
 = − + + 
   + 


{ }
 

Then ( ) ( )t B t   for 1.t T  So, we have:  

 

21/2
( )

d [ ( )] 1/2
d

2

2

d [ ( )] [ ( )]( ) [ ( )] [ ( )] ( )
d 2 [ ( )] [ ( )]

d [ ( )][ ( )] [ ( )] ( )
d

d [ ( )][ ( )] [ ( )] ( )
d

g x t

x

g x t g x t
B t g x t f x t t

x g x t f x t

g x t
g x t f x t t

x

g x t
g x t f x t B t

x

 



  
 = − + +  
   + 

 
 − +  

 

 
 − + 

 

{ }

 

We have: 
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Integrating both sides of the (8) from T1 to t, we have:  
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And letting t →  in (9): 
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which is a contradiction to eq. (7). This completes the proof.  
Theorem 3. If: 
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then every solution of (1) is oscillatory.  
Proof. Let x(t) be a non-oscillatory solution of eq. (1). Without loss of generality, we 

may assume that x is an eventually positive solution of (1). We define: 
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Thus, for every t, T with 0t T t  , we have:  
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By using the (10) implies there exists 1 0 ;T T t   such that: 
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If we consider the following function: 
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Then ( ) ( )t C t   for 1.t T  So: 
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We obtain the following inequality:  
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Integrating both sides of the (12) from T1 to t, we have:  
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Letting t → in (13): 
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which is a contradiction to eq. (11). This completes the proof of the theorem. 



Can, E., et al.: Oscillation Analysis of Conformable Fractional … 
S654 THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 2, pp. S647-S655 

Applications 

In this section we present some examples. 
Example 1. Consider the following conformable fractional differential equation: 

 (1/2) (1/4) 2 (1/4)( ) cot[ ( )][ ( )] ( ) cot[ ( )] 0 x t x t x t x t x t+ + − =  (14) 

for 0.t  This corresponds to eq. (1) with 0 0t = , 1/4, = ( ) cot( ),f x x= ( ) 1g x = and 
( ) cot( ).h x x= −  Then we have: 
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(2) and (3) holds. Thus, the eq. (14) is oscillatory from Theorem 1.  
Example 2. Consider the following conformable fractional differential equation: 
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for 0.t  This corresponds to eq. (1) with 0 0,t = 1/4, = ( ) cot( ),f x x= ( ) 1g x =  and 
( ) cot( ).h x x= −  Then we have: 
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(2) and (3) holds. Thus, eq. (14) is oscillatory from Theorem 2.  
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