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In this paper, it is discussed over the method of reduced differential transform 
method with the help of conformable derivative of the time fractional differential 
equation. This method is applied to the differential equation K(m,n), which is a 
member of the Korteweg-de Vries equations. For these solutions, certain values 
have been obtained depending on the 𝛼 parameter and these values are shown on 
the table and graph. It is shown that the method used here is effective and easy to 
apply. 
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Introduction 

Russel [1] has discovered solitary waves as a result of his work in 1834. Until the 

end of the 19th century, the solitary wave problem could not be expressed in the form of an 

equation. For this purpose, Korteweg and his student have suggested a model to open this 

event in Gustav de Vries. This model is known as the KdV equation in [2]. Solitary waves 

have attracted a lot of scientists. From these, [3], one of the most important features of these 

waves is determined against mutual collisions and the shape has given the soliton because of 

the fact that localized waves that do not lose speed characteristics. Studies in recent years. 

They discovered a new soliton class. For this new solitary wave class, they recommend the 

name of pure quartic soliton [4]. With this new discovery, communications stated that fre-

quency combs and ultrafast laser can be found in the applications. 

Solitons are localized waves that are stable against mutual collisions and do not lose 

their properties such as shape and speed [5]. The equation of K(m, n) are pioneering equations 

for compactons [5]. In the theory of solitary waves, compactins are defined as solitons with 

finite wavelengths or solitons without exponential tails [6]. Kerry Vahale et al. they discov-

ered a new type of optic soliton. This new optical soliton is fed by the energy of the other 

wave that follows and follows the other soliton waves. The discovered new wave has been 

called Stokes soliton [7]. 

In recent years, fractional differential equations and fractional modeling have been 

observed to be effective in defining many phenomena in electrodynamics, aerodynamics, sig-

nal processing, economics, control theory, biology, fluid flow, and other science and engi-
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neering fields. As we know, it is not easy to produce solutions of partial differential equations 

considered as mathematical modeling. In recent years, researchers have focused on analytical 

approximate solutions of fractional differential equations. Numerical solutions methods have 

been developed for this. Some of those are adomian decomposition method (ADM) [8], varia-

tional iteration method (VIM) (He 1999) [9], homotopy perturbation method (HPM) [10, 11], 

differential transform method (DTM) (Zhou 1986) [12], reduced differential transform meth-

od (RDTM) [13]. 

Among these methods adomian introduced some definitions and theorems in the 

book published in 1980 and showed how to apply some differential equations to the method 

of adomian decomposition [8]. The VIM introduced by He [9] has been by many mathemati-

cians and engineers to solve various functional equations. He published the HPM with his 

studies in 1999 and 2000 and showed how to apply it on differential equations [10, 11]. The 

DTM is a numerical method based on Taylor series. It can be applied to many ordinary differ-

ential and partial differential equations. Firstly, Zhou [12] used the differential transformation 

method to solve linear and non-linear initial value problems in electrical circuit analysis. The 

RDTM, which first proposed by Yildiray Keskin [13], has received much attention due to its 

applications to solve a widely variety of problems. 

The K(m, n) equations [6]: 

 
( ) ( ) 0 0,  1 3l m n

t x xxxu u u m n+ + =   
 

present a class of solitary waves with compact supports. Here, the first term is the generalized 

evolution term, while the second term represent the non-linear term and third is the dispersion 

term. Where U(x, t) is the amplitude of the wave, x is the spatial co-ordinate and t is the time. 

These solitary waves are solution of a two-parameter family with fully non-linear dispersive 

partial differential equations. Also, solitary waves are non-linear waves of finite amplitude, 

propagating with constant velocity and shape. 

The K(m, n) equations are members of the KdV [2] family. These equations are the 

oldest equations first modeled for the formation of shallow water waves in 1895. The role 

non-linear dispersion in the formation of patterns in liquid drops was studied by Rosenau and 

Hyman [6]. The K(m, n) equations are discussed with ADM [14], HPM [15, 16], and VIM 

[17].  

Basic definitions 

Definition 1. [18] Let the function f be continuous and integrable in every finite (α, 
x) range. Let , 1m m m −    and , x a a  . Therefore, the Riemann-Liouville frac-

tional derivative of the function f  is defined as; 

 1d 1
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Definition 2. [19, 20] The fractional derivative of ( )f x  in the Caputo sense is: 
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Definition 3. [21] The fractional conformable derivative α for the function 

: 0, )f  →  is: 

 
1

0

( ) ( )
( )( ) lim

f x x f x
T f x





−

→

+ −
=  (3) 

for all 0,  (0,1].x    

Lemma 1. Let (0,1]   and ,f g  be  -differentiable at a  point 0.t  . Then the 

conformable derivatives provides the given properties [21]: 

i. ( ) ( ) ( ) for   ,T af bg a T f b T g a b  + = +   

ii. 
)  ( q qT x qx 


−=
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  ( ) ,f x =
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vi. If ( )f x  is differentiable a function, then:  

 

1 d
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T f x x f x
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Conformable fractional 2-D reduced  

differential transform method 

In this section, specific theorems and definitions of the conformable fractional re-

duced differential transform method (CFRDTM) for fractional partial differential equations 

will be given. In this study, the transformation of the function ( , )u x t  under CFRDTM is 
( ).hU x  

Definition 4. [22] Assume ( , )u x t  is analytical and differentiated continuously with 

respect to time t  and space x  in its domain. CFRDTM of ( , )u x t  is: 
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where some 0 1,    is parameter describing the order of conformable fractional deriva-

tive:  

 ( )

 

( , )h

h times

t t t tT u T T TT u x t   =   

and the t-D spectrum function ( )hU x  is the CFRDTM function. 

Definition 5. [22] Let ( )hU x  be the conformable fractional differential transform of 
( , ).u x t  Inverse conformable fractional differential transform of ( )hU x  is: 

 0

0

( , ) ( )( ) h
h

h

u x t U x t t 
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from eqs. (4) and (5), we obtain: 
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Conformable fractional differential transform method of initial conditions for integer 

order derivatives are: 
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where n is the order of the corresponding fractional equation. 

By consideration of 0 ( ) ( )U x f x =  as transformation of the initial condition 
( , ) ( )u x t f x=  straightforward iterative calculations gives the ( )hU x  values for 

0,1,2, .h h=   

Then the inverse transformation of the 0( )[ ]n
h hU x

=  gives the approximate solution: 

 
0

( , ) ( ) h
n h

h

u x t U x t 


=

=  

where n  represent the order of the obtained approximation solution. Hence, the CFRDTM 

leads a solution: 

 ( , ) lim ( , )n
n

u x t u x t
→

=  

Fundamental operations of CRDTM are displayed in tab. 1. 

Table 1. Basic operations CFRDTM [22] 

Numerical example 

Here, CFRDTM will be applied for solving fractional order   (3,3)K  and (2,2).K  

Example 1. The ( , )K m n  equation with initial condition [14] and analytical solution 

[14] is: 

 D ( ) ( ) 0m n
t x xxxu u u + + =  (8) 
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If 3m n= =  in eq. (8), the time fractional partial differential equations turn into: 

 3 3D ( ) ( ) 0,  10 10,  0 5t x xxxu u u x t + + = −      (9) 
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Using the initial condition at (9), we apply the CRDTM to (11) (3,3)K  and ob-

tained: 
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If we iterate for 0,1,2, :h =   
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From the approximate solution is found from inverse transformation of the values of 

the set 10
0( )[ ]h hU x

= . In order to obtained the approximate solution of this equation, if the be-

low terms are written on the total series: 
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We then arrive at the following solution: 

 

10

10

0

3/2 5/2 2 7/2 3

2 3

9/2 4 11/2 5 13/2 6

4 5 6

15/2 7 17/2 8

7 8

( , ) ( )

6
sin   cos sin cos

2 3 3 3 36 6 6 54 6

sin cos sin
3 3 3648 6 9720 6 174960 6

cos sin
3 33674160 6 88179840 6

h
h

h

u x t U x t

c x c t x c t x c t x

c t x c t x c t x

c t x c t x

 

  

  

 

  

  

 

=

= 

 − − + +

+ − − +

+ + −



19/2 9

9

21/2 10

10

cos
32380855680 6

sin
371425670400 6

c t x

c t x









−

− +

 



Okur, S., et al.: Application of the Conformable Reduced Differential Transform Method to  … 
S608 THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 2, pp. S603-S611 

Here ha  is sequence. 0 11,  3( 1):h ha a a h−= = +  
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Figure 1. (a) The K(3, 3) equation graph for α = 1, c = 0.5 (numerical solution) and (b) the K(3, 3) 
equation graph for α = 1, c = 0.5 (exact solution)  

Table 2. When α = 1 the u(x, t) numerical solution of time-fractional differential eq. (9) 

x-value t-value Numerical solutions Exact solutions Absolute error 

1 0.5 0.21425811 0.21425811 0 

2 1.0 0.41519469 0.41519469 1.6653 · 10–16 

3 1.5 0.59031648 0.59031648 2.9976 · 10–15 

4 2.0 0.72873524 0.72873524 3.2196 · 10–14 

5 2.5 0.82184478 0.82184478 8.7152 · 10–14 

6 3.0 0.86385599 0.86385599 4.0005 · 10–12 

7 3.5 0.85215682 0.85215682 3.7770 · 10–11 

8 4.0 0.78747467 0.78747467 2.1607 · 10–10 

9 4.5 0.67383115 0.67383115 8.9583 · 10–10 

19 5.0 0.51829208 0.51829208 2.8922 · 10–9 

 
Figure 2. (a) The K(3, 3) equation graph for α = 0.75, c = 0.5 (numerical solution), (b) the K(3, 3) 
equation graph for α = 0.50, c = 0.5 (numerical solution), and (c) the K(3, 3) equation graph for 
α = 0.25, c = 0.5 (numerical solution)  
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Table 3. When α = 1, α = 0.75, α = 0.50, α = 0.25 the u(x, t) numerical solution of time-fractional 

differential eq. (9) 

 

Example 2. The K(2, 2) [23] equation with initial condition and analytical solution 

is: 

 2 2D ( ) ( ) 0,  0 8,  0 1/2t x xxxu u u x t + + =      (15) 
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Using the initial condition at (16), we apply the CRDTM to (15) (2,2)K  and ob-

tained:  
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Thus, for 0,1,2, , ,h n=  , we have, respectively, 0 1 2( ), ( ), ( ), , ( ):nU U U U     

0 1 2 3 42 3 4
( ) ( ) ( ) ( ) ( )
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α α

h

x
U  U x

αα
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From the approximate solution is found from inverse transformation of the values of 

the set 0( )[ ] .h hU x 
=  In order to obtained the approximate solution of this equation, if the 

above terms are written on the total series: 

 
0

( , ) ( )
n

h
n h

h

u x t U x t 

=

=  

x-value t-value α = 0.75 α = 0.50 α = 0.25  

1 0.5 0.17307040 0.08441673 – 0.19512677 

2 1.0 0.37235313 0.28335891 – 2.05 · 10–16 

3 1.5 0.55711319 0.48308259 0.22448905 

4 2.0 0.70924277 0.65739952 0.44564740 

5 2.5 0.81471759 0.78676234 0.63811831 

6 3.0 0.86343573 0.85653926 0.78049472 

7 3.5 0.84979702 0.85768133 0.85638894 

8 4.0 0.77316485 0.78747467 0.85590068 

9 4.5 0.63800353 0.64988401 0.77668731 

10 5.0 0.45362286 0.45532666 0.62435280 
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and we then arrive at the following solution: 
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The approximate solution of (15) and (16) by CRDTM is the same as the exact solu-

tion. 

Conclusion 

In this article, the conformable fractional reduced differential transformation method 

(CFRDTM) was applied to solve the time-fractional differential equation (3,3)K  and 
(2,2).K  The obtained results are compared on figs. 1 and 2 and tabs. 2 and 3. It has been ob-

served that the numerical results for 1 =  are quite close to analytical values. In other words, 

it has been observed that this method is effective and suitable for the solution of the fractional 

differential equation (3,3)K  and (2,2).K   
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