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The semilinear Klein-Gordon equation with initial conditions is studied in de Sitter 
spacetime. The L∞ decay estimates are derived for the solutions to the linear 
Klein- Gordon equations with and without source term in de Sitter spacetime. It 
is also showed the global existence of solutions to the initial value problem with 
power type non-linear terms for small initial data by using these estimates. 
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Introduction 

In this article, we study the semilinear Klein-Gordon equation with the following ini-
tial value problem in de Sitter spacetime: 
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where 0 1,   are in Sobolev space ( /2) 1,2 ( ),n nW   and 0.m  The model of de Sitter 
spacetime indicates the spatial expansion of the universe. The initial value problem for the 
Higgs boson equation: 

 2 2 2– , ( ,  )t n
t tn e m x t


              

in de Sitter spacetime is analyzed by Yagdjian [1], and some qualitative property of the solu-
tion revealed if the global solution exists. In addition, it was shown by Baskin [2] that the ini-
tial value problem for: 
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admits a small amplitude global solution in the energy space 1 2 ,H L  provided 2 /4n   
and 4/( 1). n   Here th  is a smooth family of Riemannian matrices on compact n-D mani-
fold Y, which is characterized as an asymptotically de Sitter spacetime. When either 
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20 ( 1/2)m n    or /2,m n  it has been shown in Yagdjian [3] that there is a constant 
0 0  such that if:  

 0 1 0( )( ) , for 0s ns n HH
       

the problem in (1) has a solution  ( 0, ; ( ))s nC H    satisfying: 
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In Nakamura [4], for /2,m n  the initial value problem (1) with the power type non- 
-linear term which satisfies the Lipschitz continuous condition was considered in de Sitter 
spacetime. The existence of global solutions was proved in the energy space if the power in the 
non-linear term satisfies the condition 4/ 2/( 2)n p n    for 3,4.n   The exponential type 
non-linear term was also considered for the problem (1) with 3,4n   in [4]. The global exist-
ence of the energy solutions was proved under the relations between the power of the non-li-
near term p, the spatial dimension n and the mass m in [5]. 

Moreover, Galstian and Yagdjian [6] showed the global existence of the small data 
solutions to the initial value problem for the following equation: 

 2 2 2– ( , ) ( ),   0,  t n
t t xn e A x m F t x             (3) 

where  
 2(0, 1/2) [ /2, )m n n    and 

2
( , ( ))x xA x a x 


 

     

is an elliptic negative second order differential operator with the real value coefficients 
.a

  Here,   denotes the space which contains all C  functions with uniformly 
bounded all orders derivatives and F is Lipschitz continuous. It is also proved in [6] that if the 
source term ( , )f f x t  is added to eq. (3) with the zero initial data, the existence result is 
valid for 0.m  In [7], Nakamura proved that the non-linear Klein-Gordon equation under the 
quartic potential has a global solution in de Sitter spacetime. The existence of the small data 
global solvability of the initial value problem for the eq. (3) proved by Yagdjian [8] for: 

 
2 1 , 
2 2

n n
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In this article, we study the case of /2 .n m  Decay estimates are crucial in proving 
the existence of global solutions for non-linear differential equations. Therefore, we use the 
L  decay estimate to show the existence global solutions to the problem (1). 

Theorem 1. Let 2[ /2] 3N n :=  and [ /2] 2k n :=  where [.]  denotes the integer 
part. Then there is a constant 0 0  such that if ,2 ,20 1( ) ( )|| || || ||N n N nW W

    for 
00 ,   the initial value problem (1) has a solution ,([0, ); ( ))k nC W    satisfying: 
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  where /2n m   

In order to prove the theorem, we recall the following estimate for the linear Klein-
Gordon equation, which is proved by Yagdjian-Galstian [9]. 

Lemma 1. Let ( , ) x t  be the solution to the following problem: 
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Here, Sobolev space is defined: 
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The positive constants C  and MC  may change and they are written by the same let-
ters throughout the paper. 

L
∞
 estimates for the Klein-Gordon equation 

We derive L∞ estimates for the linear Klein-Gordon equation in de Sitter spacetime. 
We are going to apply the following two lemmas to show the estimates where 0K  and 1K  are 
denoted by Yagdjian and Galstian [9]. 
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Lemma 2. Let 0  and ( ) 1 .tt e    Then: 
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for all 0.t   
Proof. Changing the variable by 1 ( )t s r   and using the definition of 1,K  we 

get: 
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where we have changed the variable by ( 1)te r y   in the last inequality. In [9], the hyper-
geometric function (see e.g., [10]) obeys the estimate: 
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for 0.  Hence: 
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which leads to (5). 
Lemma 3. Let 1/2  and ( ) 1 .tt e   Then: 
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for all 0.t   
Proof. Similarly to the proof of Lemma 2, we obtain: 
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From [9], we have 

 
11

2 2 2 2 12

0

( 1) [( 1) ][ ] ·
z

z y z y




     

 
2 2

2 2 2
2 2

1 1 ( 1)· (1 ) , ;1;
2 2 ( 1)

[ ] z y
z z i z y F i i

z y

  
          

  (7) 

  
2 2

2 2
2 2

1 1 1 ( 1)( 1 ) , ;1; d
2 2 2 ( 1)

z y
z y i F i i y

z y

   
              

 

  
1
2( 1) ( 1) MC z z



    

for all : 1.tz e   Hence (7) leads to (6). This completes the proof. 
Theorem 2. Let ( , )x t   be the solution to the following problem: 
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Proof. First, we consider the solution of the initial value problem: 
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As is well known, the solution ( , )v x t  of the initial value problem (10) satisfies: 
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for 0,t   if 2n  (see e.g. [11]  ). For all 0,t  we have: 
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Hence, we get: 
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On the other hand, we obtain: 
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From Lemma 2 and Lemma 3, we have: 
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Hence, from (13)-(15) we get: 
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when 1 0.   For the case 0 0:   
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in a similar way. Since 0 1 0, ( ),nC    from Holder inequality we have: 
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for the solution of (9). 
Next, we consider the solution to the initial value problem: 

 2 2 2Δ , ( ,0) 0, ( ,0) 0t
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for ( , ) (0, )nx t  , with 1( )nf C  . The solution of the initial value problem in [9] 
has the following form: 
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where ( , ; )v x t b  is the solution to the following problem: 
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If the variable tr e y  is used, then we get: 
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Then we have the following estimate for the second integral of the last inequality: 
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for .b t  Thus, we obtain: 
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Hence (18) and (19) lead to (8). This completes the proof. 

Global existence with small data 

From (1), it follows that: 
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where   is a multi-index. Therefore: 
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and for a smooth function f, set: 
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We use the following Lemma to estimate the non-linear term ( ).F   
Lemma 4. Let ( ) | |F     with an even integer 0, 2[ /2] 3N n     and 

[ /2] 1 [ /2] 2.k N n     If   is a solution of (1) with compactly supported initial data, then 
we have: 

 ,1 , ,2( ) ( ) ( )( ) N n k n N nW W W
F C 

    (22) 

where C is a positive constant. 
Proof. Since (0) 0,F   from the finite speed propagation property of the solution, 

we get: 
 ,1 ,2( ) ( )( ) ( )N n N nW W

F C F   

from Holder's inequality where C is a positive constant independent of t. It follows that: 

 

,2

1 11 2

1 1

1/2
2/2

( )
| |

1/22

| |
(

( ) (( ) ) d

) d

N n

n

n

W
N

N

F x

C x  





 



   


   

  

     





  

  
  

  

 
      
 
 



 

 

 

 

where C


 is a suitable constant. Without loss of generality, we may assume 
1 , , [ /2] 1.N     Hence we have: 

 ,2 ,2( ) ( ) ( )
| | [ /2] 1

( ) N n N n n

v

W W L
v N

F C 



  
 

 
  

  
  

This completes the proof. 
Proof of Theorem 1. Since the local smooth solution of (1) exists, we need to derive 
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In view of the proof of Lemma 4 we get: 
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for [0, ).t T  If we choose  and 0C  such that 1 0 /3CC C  , then we obtain: 
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for /2 .n m  Combining the existence of the local solution, we find that the initial value prob-
lem (1) admits a global solution. 
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