HOW TO APPROXIMATE COSINE CURVE WITH 4^{TH} AND 6^{TH} ORDER BEZIER CURVE IN PLANE?

by
Seyda KILICOGLU ${ }^{a, *}$ and Semra YURTTANCIKMAZ ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Education, Baskent University, Ankara, Turkey
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, Turkey
Original scientific paper
https://doi.org/10.2298/TSCI22S2559K

Abstract

There are many ways to approximate cosine curve. In this study we have examined the way how the cosine curve can be written as any order Bezier curve. As a result using the Maclaurin series we have examined cosine curve as the $4^{\text {th }}$ and the $6^{\text {th }}$ order Bezier curve based on the control points with matrix form in \boldsymbol{E}^{2}.We give the control points of the $4^{\text {th }}$ and the $6^{\text {th }}$ order Bezier curve based on the coefficients. Also we give the coefficients based on the the control points of the $4^{\text {th }}$ and the $6^{\text {th }}$ order Bezier curve too.

Key words: cosine curve, $4^{\text {th }}$ order Bezier curve, $6^{\text {th }}$ order Bezier curve, Maclaurin series

Introduction and preliminaries

A Bezier curve is frequently used in computer graphics and related fields, in vector graphics, used in animation as a tool to control motion [1, 2]. In animation applications such as Adobe Flash and Synfig, Bezier curves are used to outline for example movement. Users outline the wanted path in Bezier curves, and the application creates the needed frames for the object to move along the path. For 3-D animation Bezier curves are often used to define 3-D paths as well as 2-D curves for keyframe interpolation. In [3] A dual unit spherical Bézier-like curve corresponds to a ruled surface by using Study's transference principle and closed ruled surfaces are determined via control points and also, integral invariants of these surfaces are investigated. Researchers have written many publications on Bezier curves, but some of these studies inspired this article. For example: In [4], Bezier curves with curvature and torsion continuity has been examined. In [5, 6], Bezier curves and surfaces has been given. In [7], Bezier curves are designed for Computer-Aided Geometric. Recently equivalence conditions of control points and application to planar Bezier curves have been examined. In [8], Frenet apparatus of the cubic Bezier curves has been examined in \mathbf{E}^{3}. In [9], A cubic trigonometric Bezi-er-like curve similar to the cubic B ezier curve, with a shape parameter, is presented. In here, first $5^{\text {th }}$ order Bezier curve and its first, second and third derivatives have been examined based on the control points of $5^{\text {th }}$ order Bezier curve in \mathbf{E}^{3}. We have already examine in cubic Bezier curves and involutes in $[8,10]$. The Bertrand and the Mannheim mate of a cubic Bezier curve by using matrix representation have been researhed in \mathbf{E}^{3} [11, 12], respectively. In [13], it has been examined the $5^{\text {th }}$ order Bezier curve and its derivatives. In [14], it has been

[^0]researched the answer of the question How to find a $n^{\text {th }}$ order Bezier curve if we know the first, second and third derivatives?

Generally $n^{\text {th }}$ order Bezier curves can be defined by $n+1$ control points $P_{0}, P_{1}, \ldots, P_{n}$ with the parametrization:

$$
\mathbf{B}(t)=\sum_{i=0}^{n}\binom{n}{i} t^{i}(1-t)^{n-i}\left[P_{i}\right]
$$

We have already known that the matrix representation of any $4^{\text {th }}$ order Bezier curve $\alpha(t)=\left(t, a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a t_{1}+a_{0}\right)$ in \mathbf{E}^{2} is:

$$
\alpha(t)=\left[\begin{array}{lllll}
t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{4}\right]\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}
$$

where the coefficient matrix and the inverse matrix of $4^{\text {th }}$ order Bezier curves matrix are:

$$
\left[B^{4}\right]=\left[\begin{array}{ccccc}
1 & -4 & 6 & -4 & 1 \\
-4 & 12 & -12 & 4 & 0 \\
6 & -12 & 6 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \text { and }\left[B^{4}\right]^{-1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & \frac{1}{4} & 1 \\
0 & 0 & \frac{1}{6} & \frac{1}{2} & 1 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

with the control points:

$$
\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]^{T}
$$

For more detail see [8, 15].
It is well known that Taylor series of a function is an infinite sum of the functions derivatives at a single point a, also a Maclaurin series is a taylor series where $a=0$. For any function Taylor series expansion is:

$$
f(x)=\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^{n}}{n!}
$$

also a Maclaurin series is a taylor series where $a=0$.

$$
f(x)=\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n!}
$$

In this study we will focus on the $4^{\text {th }}$ and $6^{\text {th }}$ order Bezier curves in \mathbf{E}^{2}.

Cosine curve as a $4^{\text {th }}$ order Bezier curve

First let us examine the cosine curve of the function $f(x)=\cos x$ as a $4^{\text {th }}$ order Bezier curve.

Theorem 1. The matrix representation of cosine curve $f(x)=\cos x$ as a $4^{\text {th }}$ order Bezier curve is:

$$
(t, \cos t)=\left[\begin{array}{lllll}
t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{4}\right]\left[\begin{array}{ccccc}
0 & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 \\
1 & 1 & \frac{11}{12} & \frac{3}{4} & \frac{13}{24}
\end{array}\right]^{T}
$$

with the control points:

$$
\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}=\left[\begin{array}{ccccc}
0 & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 \\
1 & 1 & \frac{11}{12} & \frac{3}{4} & \frac{13}{24}
\end{array}\right]^{T}
$$

Proof. For cosine function, the $4^{\text {th }}$ degree Maclaurin series expansion is $\cos x=1-x^{2} / 2!+x^{4} / 4!$, it can be written as in the parametric form and a $5^{\text {th }}$ degree polynomial function:

$$
(t, \cos t)=\left(t, \frac{t^{4}}{4!}-\frac{t^{2}}{2!}+1\right)=\left(t, a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $4^{\text {th }}$ order Bezier curve as in:

$$
(t, \cos t)=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & \frac{1}{4!} \\
0 & 0 \\
0 & \frac{-1}{2!} \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{4}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]
$$

Solving the equation we get the control points $P_{0}, P_{1}, P_{2}, P_{3}$, and P_{4}.
Corollary 1. The apscissas and the ordinates of the control points of cosine curve as a $4^{\text {th }}$ order Bezier curve are:

$$
x_{0}=0 x_{1}=\frac{1}{4} x_{2}=\frac{2}{4} x_{3}=\frac{3}{4} x_{4}=1
$$

and

$$
\left[\begin{array}{lllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right]^{T}=\left[B^{4}\right]^{-1}\left[\begin{array}{lllll}
\frac{1}{4!} & 0 & \frac{-1}{2!} & 0 & 1
\end{array}\right]^{T}
$$

Now, let's examine the cosine curve as a $4^{\text {th }}$ order Bezier curve. First we will examine the cosine curve $f(x)=a \cos b x$.

Theorem 2. The matrix representation of the cosine curve of the function $f(x)=a \cos b x$ as a $4^{\text {th }}$ order Bezier curve is:

$$
(t, a \cos b t)=\left[\begin{array}{lllll}
t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{4}\right]\left[\begin{array}{ccccc}
0 & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 \\
a & a & a-\frac{a b^{2}}{12} & a-\frac{a b^{2}}{4} & \frac{a b^{4}}{24}-\frac{a b^{2}}{2}+a
\end{array}\right]^{T}
$$

where control points $P_{0}, P_{1}, P_{2}, P_{3}$, and P_{4} are:

$$
\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}=\left[\begin{array}{ccccc}
0 & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 \\
a & a & a-\frac{a b^{2}}{12} & a-\frac{a b^{2}}{4} & \frac{a b^{4}}{24}-\frac{a b^{2}}{2}+a
\end{array}\right]^{T}
$$

Proof. We need to write $f(x)=a \cos b x$ in Maclaurin series expansion. For cosine function $f(x)=a \cos b x$, as any $4^{\text {th }}$ degree Maclaurin series expansion is:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{4}(a \cos b x)^{(n)}(0) \frac{x^{n}}{n!} \\
& =a-\frac{a b^{2}}{2!} x^{2}+\frac{a b^{4} \cos (0)}{4!} x^{4}
\end{aligned}
$$

This $4^{\text {th }}$ degree polynomial function can be written as in parametric form

$$
(t, a \cos b t)=\left(t, \frac{a b^{4}}{4!} t^{4}-\frac{a b^{2}}{2!} t^{2}+a\right)=\left(t, a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $4^{\text {th }}$ order Bezier curve as in:

$$
(t, a \cos b t)=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & \frac{a b^{4}}{4!} \\
0 & 0 \\
0 & -\frac{a b^{2}}{2!} \\
1 & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{4}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]
$$

Hence solving the equation as in the following way:

$$
\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}=\left[B^{4}\right]^{-1}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
\frac{a b^{4}}{4!} & 0 & \frac{-a b^{2}}{2!} & 0 & a
\end{array}\right]^{T}
$$

So, we get the proof.

Now also, we will examine sine function $f(x)=a \cos (b x-c)$ as a $4^{\text {th }}$ order Bezier curve.

Theorem 3. The matrix representation of the cosine curve of $f(x)=a \cos (b x-c)$ as a $4^{\text {th }}$ order Bezier curve is:

$$
[t, a \cos (b t-c)]=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[B^{4}\right]\left[\begin{array}{cc}
0 & a \cos c \\
\frac{1}{4} & a \cos c+\frac{a b}{4} \sin c \\
\frac{1}{2} & -\frac{a b^{2}}{12} \cos c+\frac{a b}{2} \sin c+a \cos c \\
\frac{3}{4} & -\frac{a b^{3}}{24} \sin c-\frac{a b^{2}}{4} \cos c+\frac{3 a b}{4} \sin c+a \cos c \\
1 & \frac{a b^{4} \cos c}{24}-\frac{a b^{3}}{6} \sin c-\frac{a b^{2}}{2} \cos c+a b \sin c+a \cos c
\end{array}\right]
$$

where the control points $P_{0}, P_{1}, P_{2}, P_{3}$, and P_{4} are

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]=\left[\begin{array}{cc}
0 & a \cos c \\
\frac{1}{4} & a \cos c+\frac{a b}{4} \sin c \\
\frac{1}{2} & -\frac{a b^{2}}{12} \cos c+\frac{a b}{2} \sin c+a \cos c \\
\frac{3}{4} & -\frac{a b^{3}}{24} \sin c-\frac{a b^{2}}{4} \cos c+\frac{3 a b}{4} \sin c+a \cos c \\
1 & \frac{a b^{4} \cos c}{24}-\frac{a b^{3}}{6} \sin c-\frac{a b^{2}}{2} \cos c+a b \sin c+a \cos c
\end{array}\right]
$$

Proof. Lets examine the cosine curve as a $4^{\text {th }}$ order Bezier curve. First we need to write $f(x)=a \cos (b x-c)$ in Maclaurin series expansion. For cosine function $4^{\text {th }}$ degree Maclaurin series expansion is:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{4}[a \cos (b x-c)]^{(n)}(0) \frac{x^{n}}{n!}= \\
& =[a \cos (b .0-c)] 1+[a \cos (b x-c)]^{\prime}(0) x+[a \cos (b x-c)]^{\prime \prime}(0) \frac{x^{2}}{2!}+ \\
& +[a \cos (b x-c)]^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+[a \cos (b x-c)]^{(2 v)}(0) \frac{x^{4}}{4!}
\end{aligned}
$$

This $4^{\text {th }}$ degree polynomial function can be written as in parametric form

$$
\begin{aligned}
{[t, a \cos (b t-c)] } & =\left\lfloor t, \frac{a b^{4} \cos c}{4!} t^{4}-\frac{a b^{3} \sin c}{3!} t^{3}-\frac{a b^{2} \cos c}{2!} t^{2}+(a b \sin c) t+a \cos c\right\rfloor \\
& =\left(t, a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
\end{aligned}
$$

Also this can be written in matrix form with the matrix representation of $4^{\text {th }}$ order Bezier curve as in:

$$
[t, a \cos (b t-c)]=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & \frac{a b^{4} \cos c}{4!} \\
0 & \frac{-a b^{3} \sin c}{3!} \\
0 & \frac{-a b^{2} \cos c}{2!} \\
1 & a b \sin c \\
0 & a \cos c
\end{array}\right]=\left[\begin{array}{c}
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{4}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]
$$

Solving the equation we get the control points $P_{0}, P_{1}, P_{2}, P_{3}$, and P_{4} as in the result of the matrix product:

$$
\left[\begin{array}{lllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4}
\end{array}\right]^{T}=\left[B^{4}\right]^{-1}\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
\frac{a b^{4} \cos c}{4!} & -\frac{a b^{3} \sin c}{3!} & \frac{-a b^{2} \cos c}{2!} & a b \sin c & a \cos c
\end{array}\right]^{T}
$$

This completes the proof.
Corollary 1. The coefficients of the $[t, a \cos (b t-c)]$ based on the control points of the $4^{\text {th }}$ order Bezier curve as:

$$
\left[\begin{array}{cc}
0 & \frac{a b^{4} \cos c}{4!} \\
0 & \frac{-a b^{3} \sin c}{3!} \\
0 & \frac{-a b^{2} \cos c}{2!} \\
1 & a b \sin c \\
0 & a \cos c
\end{array} \left\lvert\,=\left[\begin{array}{cc}
x_{0}-4 x_{1}+6 x_{2}-4 x_{3}+x_{4} & y_{0}-4 y_{1}+6 y_{2}-4 y_{3}+y_{4} \\
12 x_{1}-4 x_{0}-12 x_{2}+4 x_{3} & 12 y_{1}-4 y_{0}-12 y_{2}+4 y_{3} \\
6 x_{0}-12 x_{1}+6 x_{2} & 6 y_{0}-12 y_{1}+6 y_{2} \\
4 x_{1}-4 x_{0} & 4 y_{1}-4 y_{0} \\
x_{0} & y_{0}
\end{array}\right]\right.\right.
$$

Cosine curve as a $6^{\text {th }}$ order Bezier curve

We have to write the coefficients matrix of any $6^{\text {th }}$ order Bezier curve. We have already known that the matrix representation is $6^{\text {th }}$ order Bezier curve as follows.

Theorem 4. The coefficients matrix and inverse matrix of any $6^{\text {th }}$ order Bezier curve are:

$$
\left.\left[B^{6}\right]=\left\lvert\, \begin{array}{ccccccc}
1 & -6 & 15 & -20 & 15 & -6 & 1 \\
-6 & 30 & -60 & 60 & -30 & 6 & 0 \\
15 & -60 & 90 & -60 & 15 & 0 & 0 \\
-20 & 60 & -60 & 20 & 0 & 0 & 0 \\
15 & -30 & 15 & 0 & 0 & 0 & 0 \\
-6 & 6 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.\right\rfloor
$$

and

$$
\left[B^{6}\right]^{-1}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{6} & 1 \\
0 & 0 & 0 & 0 & \frac{1}{15} & \frac{1}{3} & 1 \\
0 & 0 & 0 & \frac{1}{20} & \frac{1}{5} & \frac{1}{2} & 1 \\
0 & 0 & \frac{1}{15} & \frac{1}{5} & \frac{2}{5} & \frac{2}{3} & 1 \\
0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{5}{6} & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Theorem 5. The matrix representation of cosine curve $f(x)=\cos x$ as a $6^{\text {th }}$ order Bezier curve based on the coefficients is:

$$
(t, \cos t)=\left[\begin{array}{lllllll}
t^{6} & t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{6}\right]\left[\begin{array}{ccccccc}
0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{5}{6} & 1 \\
1 & 1 & \frac{29}{30} & \frac{9}{10} & \frac{289}{360} & \frac{49}{72} & \frac{389}{720}
\end{array}\right]^{T}
$$

Proof. For cosine function $6^{\text {th }}$ degree Maclaurin series expansion is:

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

It can be written as in parametric form:

$$
(t, a \cos b t)=\left(t,-\frac{1}{6!} t^{6}+\frac{1}{4!} t^{4}-\frac{1}{2!} t^{2}+1\right)=\left(t, a_{6} t^{6}+a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $6^{\text {th }}$ order Bezier curve as in:

$$
\left.(t, a \cos b t)=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T} \left\lvert\, \begin{array}{cc}
0 & -\frac{1^{6}}{6!} \\
0 & 0 \\
0 & \frac{1^{4}}{4!} \\
0 & 0 \\
0 & -\frac{1^{2}}{2!} \\
1 & 0 \\
0 & 1
\end{array}\right.\right]=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{6}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]
$$

Hence solving the equation we get the control points as in the following way:
$\left[\begin{array}{lllllll}P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6}\end{array}\right]^{T}=\left[B^{6}\right]^{-1}\left[\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -\frac{1^{6}}{6!} & 0 & \frac{1^{4}}{4!} & 0 & -\frac{1^{2}}{2!} & 0 & 1\end{array}\right]^{T}$
Corollary 2. The apscissas and ordinates of the control points of cosine curve as a $6^{\text {th }}$ order Bezier curve are:

$$
\begin{array}{r}
x_{0}=0, \quad x_{1}=\frac{1}{6}, \quad x_{2}=\frac{2}{6}, \quad x_{3}=\frac{3}{6}, \quad x_{4}=\frac{4}{6}, \quad x_{5}=\frac{5}{6}, \quad x_{6}=1 \\
{\left[\begin{array}{lllllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6}
\end{array}\right]^{T}=\left[B^{6}\right]^{-1}\left[\begin{array}{lllllll}
-\frac{1^{6}}{6!} & 0 & \frac{1^{4}}{4!} & 0 & -\frac{1^{2}}{2!} & 0 & 1
\end{array}\right]^{T}}
\end{array}
$$

Theorem 6. The matrix representation of the cosine curve of function $f(x)=a \cos b x$ as a $6^{\text {th }}$ order Bezier curve is:

$$
(t, a \cos b t)=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[B^{6}\right]\left[\begin{array}{cc}
0 & a-\frac{1}{30} a b^{2} \\
\frac{1}{6} & a-\frac{1}{10} a b^{2} \\
\frac{1}{3} & \frac{1}{360} a b^{4}-\frac{1}{5} a b^{2}+a \\
\frac{2}{3} & \frac{1}{72} a b^{4}-\frac{1}{3} a b^{2}+a \\
\frac{5}{6} & -\frac{1}{720} a b^{6}+\frac{1}{24} a b^{4}-\frac{1}{2} a b^{2}+a \\
1 & -\cos
\end{array}\right]
$$

with the control points:

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]=\left[\begin{array}{cc}
0 & a \\
\frac{1}{6} & a \\
\frac{1}{3} & a-\frac{1}{30} a b^{2} \\
\frac{1}{2} & a-\frac{1}{10} a b^{2} \\
\frac{2}{3} & \frac{1}{360} a b^{4}-\frac{1}{5} a b^{2}+a \\
\frac{5}{6} & \frac{1}{72} a b^{4}-\frac{1}{3} a b^{2}+a \\
1 & -\frac{1}{720} a b^{6}+\frac{1}{24} a b^{4}-\frac{1}{2} a b^{2}+a
\end{array}\right] .
$$

Proof. For cosine function $f(x)=a \cos b x$, can be written as $6^{\text {th }}$ degree Maclaurin series expansion as:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{6}(a \cos b x)^{(n)}(0) \frac{x^{n}}{n!}= \\
& =a-\frac{a b^{2}}{2!} x^{2}+\frac{a b^{4} \cos (0)}{4!} x^{4}+\frac{-a b^{5} \sin (0)}{5!} x^{5}+\frac{-a b^{6} \cos (0)}{6!} x^{6} \\
& f(x)=a-\frac{a b^{2} x^{2}}{2!}+\frac{a b^{4} x^{4}}{4!}-\frac{a b^{6} x^{6}}{6!}
\end{aligned}
$$

This $6^{\text {th }}$ degree polynomial function can be written as in parametric form:

$$
\begin{aligned}
& (t, \operatorname{acos} b t)=\left(t,-\frac{a b^{6}}{6!} t^{6}+\frac{a b^{4}}{4!} t^{4}-\frac{a b^{2} t^{2}}{2!}+a\right)= \\
& =\left(t, a_{6} t^{6}+a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
\end{aligned}
$$

Also this can be written in matrix form with the matrix representation of $6^{\text {th }}$ order Bezier curve as in:

$$
(t, a \cos b t)=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{a b^{6}}{6!} \\
0 & 0 \\
0 & \frac{a b^{4}}{4!} \\
0 & 0 \\
0 & -\frac{a b^{2}}{2!} \\
1 & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[B^{6}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]
$$

Hence solving the equation, we get the control points:

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]=\left[\begin{array}{cc}
0 & a \\
\frac{1}{6} & a-\frac{1}{30} a b^{2} \\
\frac{1}{3} & a-\frac{1}{10} a b^{2} \\
\frac{1}{2} & \frac{1}{360} a b^{4}-\frac{1}{5} a b^{2}+a \\
\frac{2}{3} & \frac{1}{72} a b^{4}-\frac{1}{3} a b^{2}+a \\
\frac{5}{6} & -\frac{1}{720} a b^{6}+\frac{1}{24} a b^{4}-\frac{1}{2} a b^{2}+a
\end{array}\right]
$$

This completes the proof.

Theorem 7. The matrix representation of the sine curve of $f(x)=a \cos (b x-c)$ as a $6^{\text {th }}$ order Bezier curve is:

$$
[t, a \cos (b t-c)]=\left[\begin{array}{lllllll}
t^{6} & t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{6}\right]\left[\begin{array}{lllllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6}
\end{array}\right]^{T}
$$

with the control points:

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]=\left[\begin{array}{cc}
0 & a \cos c \\
\frac{1}{6} & -\frac{a b^{2} \cos c}{30}+\frac{a b \sin c}{3}+a \cos c \\
\frac{1}{3} & \frac{-a b^{3} \sin c}{120}-\frac{a b^{2} \cos c}{10}+\frac{a b \sin c}{2}+a \cos c \\
\frac{1}{2} & \frac{a b^{4} \cos c}{360}-\frac{a b^{3} \sin c}{30}-\frac{a b^{2} \cos c}{5}+\frac{2 a b \sin c}{3}+a \cos c \\
\frac{2}{3} & \frac{-a b^{5} \sin c}{720}+\frac{a b^{4} \cos c}{72}-\frac{a b^{3} \sin c}{12}-\frac{a b^{2} \cos c}{3}+\frac{5 a b \sin c}{6}+a \cos c \\
\frac{5}{6} & \frac{-a b^{6} \cos c}{720}-\frac{a b^{5} \sin c}{120}+\frac{a b^{4} \cos c}{24}-\frac{a b^{3} \sin c}{6}-\frac{a b^{2} \cos c}{2}+a b \sin c+a \cos c
\end{array}\right]
$$

Proof. Lets examine the cosine curve as a $6^{\text {th }}$ order Bezier curve. First we need to write $f(x)=a \cos (b x-c)$ in Maclaurin series expansion. For cosine function $6^{\text {th }}$ degree Maclaurin series expansion is:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{6}[a \cos (b x-c)]^{(n)}(0) \frac{x^{n}}{n!}= \\
& =a \cos c+(a b \sin c) x-a b^{2}(\cos c) \frac{x^{2}}{2!}-a b^{3}(\sin c) \frac{x^{3}}{3!}+ \\
& +a b^{4}(\cos c) \frac{x^{4}}{4!}-a b^{5}(\sin c) \frac{x^{5}}{5!}-a b^{6}(\cos c) \frac{x^{6}}{6!}
\end{aligned}
$$

This $6^{\text {th }}$ degree polynomial function can be written as in parametric form:

$$
\begin{aligned}
{[t, a \cos (b t-c)] } & =\left(\frac{a b^{7} \sin (c)}{7!} t^{7}, \frac{-a b^{6} \cos (c)}{6!} t^{6}-\frac{a b^{5} \sin (c)}{5!} t^{5}+\frac{a b^{4} \cos c}{4!} t^{4}-\right. \\
& \left.-\frac{a b^{3} \sin c}{3!} t^{3}-\frac{a b^{2} \cos c}{2!} t^{2}+(a b \sin c) t+a \cos c\right)
\end{aligned}
$$

Also this can be written in matrix form with the matrix representation of $6^{\text {th }}$ order Bezier curve as in:

$$
[t, a \cos (b t-c)]=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & \frac{-a b^{6} \cos c}{6!} \\
0 & \frac{-a b^{5} \sin c}{5!} \\
0 & \frac{a b^{4} \cos c}{4!} \\
0 & \frac{-a b^{3} \sin c}{3!} \\
1 & a b \sin c \\
0 & a \cos c
\end{array}\right]=\left[\begin{array}{c}
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{6}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6}
\end{array}\right]
$$

Hence solving the equation we get the proof.
Corollary 3. The coefficients of the $[t, a \cos (b t-c)]$ based on the control points of the $6^{\text {th }}$ order Bezier curve are:

References

[1] ***, Derivatives of a Bezier Curve, https://pages.mtu.edu/shene/COURSES/cs362n/NOTES/spline/ Bezier/ bezier-der. html.
[2] Marsh, D., Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, 2006
[3] Tas, F., Ilarslan, K., A New Approach to Design the Ruled Surface, International Journal of Geometric Methods in Modern Physics, 16 (2019), 6, 1950093
[4] Hagen, H., Bezier-Curves with Curvature and Torsion Continuity, Rocky Mountain J. Math., 16 (1986), 3, pp. 629-638
[5] Zhang, H., Jieqing, F., Bezier Curves and Surfaces (2), State Key Lab of CAD\&CG Zhejiang University, 2006
[6] Michael, S. F., Bezier Curves and Surfaces, in: Enciclopedia of Applied and Computational Mathematics, pp. 113-115, Springer, New York, USA, 2003
[7] Farin, G., Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, New York, USA, 1996
[8] Kilicoglu, S., Senyurt, S., On the Cubic Bezier Curves in E33, Ordu University Journal of Science and Technology, 9 (2019), 2, pp. 83-97
[9] Levent, A., Sahin, B., Cubic Bezier-Like Transition Curves with New Basis Function, Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan, 44 (2008), 2, pp. 222-228
[10] Kilicoglu, S., Senyurt, S., On the Involute of the Cubic Bezier Curve by Using Matrix Representation in \mathbf{E}^{3}, European Journal of Pure and Applied Mathematics, 13 (2020), 2, pp. 216-226
[11] Kilicoglu, S., Senyurt, S., An Examination on to Find 5 ${ }^{\text {th }}$ Order Bezier Curve in E ${ }^{3}$, Journal of New Theory, 37 (2021), Dec., pp. 35-44
[12] Kilicoglu, S., Senyurt, S., On the Mannheim Partner of a Cubic Bezier Curve in $\mathbf{E}^{\mathbf{3}}$, International Journal of Maps in Mathematics, 5 (2022), 2, pp. 182-197
[13] Kilicoglu, S., Senyurt, S., On the Matrix Representation of $5^{\text {th }}$ order Bezier Curve and Derivatives, Commun .Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 71 (2022), 1, pp. 133-152
[14] Kilicoglu, S., Senyurt, S., How to Find Bezier Curves in \mathbf{E}^{3}, Communications in Advanced Mathematical Sciences, 5 (2022), 1, pp. 12-24
[15] Kilicoglu, S., Senyurt, S., On the Matrix Representation of Bezier Curves and Derivatives in $\mathbf{E}^{\mathbf{3}}$, Sigma J . Engineering and Natural Sci., 71 (2022), 1, pp. 133-152

[^0]: * Corresponding author, e-mail: seyda@ baskent.edu.tr

