ON APPROXIMATION SINE WAVE WITH THE 5^{TH} AND $7^{7 \mathrm{TH}}$ ORDER BEZIER PATHS IN PLANE

by
Seyda KILICOGLU*
Department of Mathematics, Faculty of Education, Baskent University, Ankara, Turkey
Original scientific paper
https://doi.org/10.2298/TSCI22S2539K

Abstract

There are many studies to approximate to sine curve or sine wave. In this study, it has been examined the way how the sine wave can be written as any order Bezier curve. First, it has been written the $5^{\text {th }}$ and the $7^{\text {th }}$ degree Maclaurin series expansion of the parametric form of sine curve. Also, they are $5^{\text {th }}$ and the $7^{\text {th }}$ order Bezier paths, based on the control points with matrix form in \boldsymbol{E}^{2}. Hence it has been given the control points of the $5^{\text {th }}$ and the $7^{\text {th }}$ order Bezier curve based on the coefficients of the $5^{\text {th }}$ and the $7^{\text {th }}$ degree Maclaurin series expansion of the sine curves in three steps. Further it has been given the coefficients based on the control points of the $5^{\text {th }}$ and the $7^{\text {th }}$ order Bezier curve too.

Key words: sine wave, Bezier curve, Maclaurin series, $7^{\text {th }}$ order Bezier curve

Introduction and preliminaries

A Bezier curve is frequently used in computer graphics and related fields, in vector graphics, used in animation as a tool to control motion, see in [1, 2]. In animation applications such as Adobe Flash and Synfig, Bezier curves are used to outline for example movement. Users outline the wanted path in Bezier curves, and the application creates the needed frames for the object to move along the path. For 3-D animation Bezier curves are often used to define 3-D paths as well as 2-D curves for keyframe interpolation. In [3] a dual unit spherical Bezier-like curve corresponds to a rulled surface by using Study's transference principle and closed ruled surfaces are determined via control points and also, integral invariants of these surfaces are investigated. Researchers have written many publications on Bezier curves, but some of these studies inspired this article. For example: in [4], Bezier curves with curvature and torsion continuity has been examined. In [5, 6], Bezier curves and surfaces has been given. In [7], Bezier curves are designed for computer-aided geometric. Recently equivalence conditions of control points and application to planar Bezier curves have been examined. In [8], Frenet apparatus of the cubic Bezier curves has been examined in \mathbf{E}^{3}. In [9], a cubic trigonometric Bezier-like curve similar to the cubic Bezier curve, with a shape parameter, is presented. In here, first $5^{\text {th }}$ order Bezier curve and its first, second and third derivatives have been examined based on the control points of $5^{\text {th }}$ order Bezier Curve in \mathbf{E}^{3}. We have already examined in cubic Bezier curves and involutes in [8, 10]. The Bertrand and the Mannheim mate of a cubic Bezier curve by using matrix representation have been researched in $\mathbf{E}^{3}[11,12]$, respectively. In [13], it has been examined the $5^{\text {th }}$ order Bezier curve and its derivatives. In [14], it has been researched the answer of the question "How to find a $n^{\text {th }}$ order Bezier curve if we

[^0]know the first, second and third derivatives? Also in [15] it has been given the way how we can determine the wanted $5^{\text {th }}$ order Bezier curve, if we know its the first, the second, and the third derivatives, which it has the wanted control points. And finally, in [14], approximation of circular arcs and helices have been studied. Generaly $n^{\text {th }}$ order Beziers curve can be defined by $n+1$ control points $P_{0}, P_{1}, \ldots, P_{n}$ with the parametrization:
$$
\mathbf{B}(t)=\sum_{i=0}^{n}\binom{n}{i} t^{i}(1-t)^{n-i}\left[P_{i}\right]
$$

We have already known that the matrix representation of $\alpha(t)=\left(t, a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a t_{1}+a_{0}\right)$ as $5^{\text {th }}$ order Bezier path in \mathbf{E}^{2} is:

$$
\alpha(t)=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{5}\right]\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}
$$

where the coefficient matrix and the inverse of the $5^{\text {th }}$ order Bezier curve are:

$$
\left[B^{5}\right]=\left[\begin{array}{cccccc}
-1 & 5 & -10 & 10 & -5 & 1 \\
5 & -20 & 30 & -20 & 5 & 0 \\
-10 & 30 & -30 & 10 & 0 & 0 \\
10 & -20 & 10 & 0 & 0 & 0 \\
-5 & 5 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad\left[B^{5}\right]^{-1}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \frac{1}{5} & 1 \\
0 & 0 & 0 & \frac{1}{10} & \frac{2}{5} & 1 \\
0 & 0 & \frac{1}{10} & \frac{3}{10} & \frac{3}{5} & 1 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Also the control points are:

$$
\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}=\left[B^{5}\right]^{-1}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]^{T}
$$

For more detail see [1, 13].
In this study, it will be focused on the $5^{\text {th }}$ and $7^{\text {th }}$ order Bezier paths in $\mathbf{E}^{\mathbf{2}}$. It is well known that Taylor series of a function is an infinite sum of the functions derivatives at a single point, also a Maclaurin series is a Taylor series where $a=0$. For any function Taylor series expansion is

$$
f(x)=\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^{n}}{n!}
$$

also a Maclaurin series:

$$
f(x)=\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n!}
$$

is a taylor series where $a=0$.

Sine wave as a $5^{\text {th }}$ order Bezier path

In this section, it has been focused on three types of sine wave as a $5^{\text {th }}$ order Bezier path. First, it will be examined sine function $f(x)=\sin x$.

Theorem 1. The matrix representation of the sine wave of function $f(x)=\sin x$ as a $5^{\text {th }}$ order Bezier curve is:

$$
(t, \sin t)=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{5}\right]\left[\begin{array}{cccccc}
0 & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{5}{5} & 1 \\
& \frac{1}{5} & \frac{2}{5} & \frac{7}{12} & \frac{11}{15} & \frac{101}{120}
\end{array}\right]^{T}
$$

with the control points:

$$
\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}=\left[\begin{array}{cccccc}
0 & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{5}{5} & 1 \\
0 & \frac{1}{5} & \frac{2}{5} & \frac{7}{12} & \frac{11}{15} & \frac{101}{120}
\end{array}\right]^{T}
$$

Proof. For sine function $f(x)=\sin x$, the $5^{\text {th }}$ degree Maclaurin series expansion:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

can be written as in the parametric form and a $5^{\text {th }}$ degree polynomial function:

$$
(t, \sin t)=\left(t, \frac{t^{5}}{5!}-\frac{t^{3}}{3!}+t\right)=\left(t, a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $5^{\text {th }}$ order Bezier path as in:

$$
\left.\begin{array}{l}
(t, \sin t)=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]^{T}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{1}{5!} & 0 & -\frac{1}{3!} & 0 & 1 & 0
\end{array}\right]= \\
\quad=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{5}\right.
\end{array}\right]\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]=
$$

Solving the equation we get the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$, and $5^{\text {th }}$.
Secondly, let's examine the sine function $f(x)=a \sin b x$, as any $5^{\text {th }}$ order Bezier path. The control points of the $5^{\text {th }}$ order Bezier path have been determined based on the coefficients a and b.

Theorem 2. The matrix representation of the sine wave of the function $f(x)=a \sin b x$ as a $5^{\text {th }}$ order Bezier path is:

$$
(t, a \sin b t)=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{5}\right]\left[\begin{array}{cccccc}
0 & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1 \\
0 & \frac{a b}{5} & \frac{2 a b}{5} & \frac{36 a b-a b^{3}}{60} & \frac{12 a b-a b^{3}}{15} & \frac{a b^{5}-20 a b^{3}+120 a b}{120}
\end{array}\right]^{T}
$$

with the control points:

$$
\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}=\left[\begin{array}{cccccc}
0 & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{5}{5} & 1 \\
0 & \frac{a b}{5} & \frac{2 a b}{5} & \frac{36 a b-a b^{3}}{60} & \frac{12 a b-a b^{3}}{15} & \frac{a b^{5}-20 a b^{3}+120 a b}{120}
\end{array}\right]^{T}
$$

Proof. We need to write $f(x)=a \sin b x$ in Maclaurin series expansion. For sine function $f(x)=a \sin b x$, as any $5^{\text {th }}$ degree Maclaurin series expansion is:

$$
f(x)=\sum_{n=0}^{5}(a \sin b x)^{(n)}(0) \frac{x^{n}}{n!}=a b x-\frac{a b^{3} x^{3}}{3!}+\frac{a b^{5} x^{5}}{5!}
$$

This $5^{\text {th }}$ degree polynomial function can be written as in parametric form:
$(t, a \sin b t)=\left(t, \frac{a b^{5}}{5!} t^{5}-\frac{a b^{3}}{3!} t^{3}+a b t\right)=\left(t, a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)$
Also this can be written in matrix form with the matrix representation of $5^{\text {th }}$ order Bezier path as in:

$$
(t, a \sin b t)=\left[\begin{array}{c}
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{a b^{5}}{5!} & 0 & -\frac{a b^{3}}{3!} & 0 & a b & 0
\end{array}\right]=\left[\begin{array}{c}
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[B^{5}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5}
\end{array}\right]
$$

Hence solving the equation as in the following way we get the proof:

$$
\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}=\left[B^{5}\right]^{-1}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{a b^{5}}{5!} & 0 & -\frac{a b^{3}}{3!} & 0 & a b & 0
\end{array}\right]
$$

Corollary 1. The apscissas and ordinates of the control points the control points $P_{0}=\left(x_{0}, y_{0}\right), P_{10}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), P_{3}=\left(x_{3}, y_{3}\right), P_{4}=\left(x_{4}, y_{4}\right)$, and $P_{5}=\left(x_{5}, y_{5}\right)$ curve $\alpha(t)=(t, a \sin b t)$ have the following representations based on the coefficients. Under the following conditions $5^{\text {th }}$ Bezier curve can be written $f(x)=a \sin b x$ curve in plane:

$$
x_{0}=0 x_{1}=\frac{1}{5} x_{2}=\frac{2}{5} x_{3}=\frac{3}{5} x_{4}=\frac{4}{5} x_{5}=1
$$

and

$$
\left[\begin{array}{llllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5}
\end{array}\right]^{T}=\left[B^{5}\right]^{-1}\left[\begin{array}{llllll}
\frac{a b^{5}}{5!} & 0 & -\frac{a b^{3}}{3!} & 0 & a b & 0
\end{array}\right]^{T}
$$

Now it will be examined a more complex sine wave $f(x)=a \sin (b x-c)$ as a $5^{\text {th }}$ order Bezier path.

Theorem 3. The matrix representation of the sine wave $f(x)=a \sin (b x-c)$ as a $5^{\text {th }}$ order Bezier path is: $[t, a \sin (b t-c)]=\left[\begin{array}{llllll}t^{5} & t^{4} & t^{3} & t^{2} & t & 1\end{array}\right]\left[B^{5}\right]\left[\begin{array}{llllll}P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}\end{array}\right]^{T}$ with the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$, and P_{5} are:

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5}
\end{array}\right]=\left[\begin{array}{cc}
0 & -a \sin c \\
\frac{1}{5} a b \cos c-a \sin c \\
\frac{2}{5} & \frac{a b^{2}}{20} \sin c+\frac{2 a b}{5} \cos c-a \sin c \\
\frac{3}{5} & -\frac{a b^{3}}{60} \cos c+\frac{3 a b^{2}}{20} \sin c+\frac{3 a b}{5} \cos c-a \sin c \\
\frac{4}{5} & \frac{a b^{4}}{120} \sin c-\frac{a b^{3}}{15} \cos c+\frac{3 a b^{2}}{10} \sin c+\frac{4 a b}{5} \cos c-a \sin c \\
1 \frac{a b^{5}}{120} \cos c-\frac{a b^{4}}{24} \sin c-\frac{a b^{3}}{6} \cos c+\frac{a b^{2}}{2} \sin c+a b \cos c-a \sin c
\end{array}\right]
$$

Proof. Let's examine the sine wave as a $5^{\text {th }}$ order Bezier path. First, we need to write $f(x)=a \sin (b x-c)$ in Maclaurin series expansion. For sine function $5^{\text {th }}$ degree Maclaurin series expansion is:

$$
\begin{gathered}
f(x)=\sum_{n=0}^{5}[a \sin (b x-c)]^{(n)}(0) \frac{x^{n}}{n!}= \\
=a \sin (b x-c)=a \sin (-c)+a b[\cos (-c)](x)+\frac{-a b^{2} \sin (-c)}{2!} x^{2}+ \\
+\frac{-a b^{3} \cos (-c)}{3!} x^{3}+\frac{a b^{4} \sin (-c)}{4!} x^{4}+\frac{a b^{5} \cos (-c)}{5!} x^{5}
\end{gathered}
$$

It can be written as in parametric form and a $5^{\text {th }}$ degree polynomial function:

$$
[t, a \sin (b t-c)]=\left[t, \frac{a b^{5} \cos c}{5!} t^{5}-\frac{a b^{4} \sin c}{4!} t^{4}-\frac{a b^{3} \cos c}{3!} t^{3}+\frac{a b^{2} \sin c}{2!} t^{2}+a b(\cos c) t-a \sin c\right]
$$

Also this can be written in matrix form with the matrix representation of $5^{\text {th }}$ order Bezier path as in:

$$
[t, \operatorname{asin}(b t-c)]=
$$

$$
\left.\begin{array}{rl}
=\left[\begin{array}{llllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{a b^{5} \cos c}{5!} & \frac{-a b^{4} \sin c}{4!} & \frac{-a b^{3} \cos c}{3!} & \frac{a b^{2} \sin c}{2!} & \text { abcosc} & -\mathrm{asin} c
\end{array}\right]= \\
& =\left[\begin{array}{llllllll}
t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{5}\right.
\end{array}\right]\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T} .
$$

Solving the equation we get the control points as in the result of the matrix product:

$$
\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array}\right]^{T}=\left[B^{5}\right]^{-1}\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
\frac{a b^{5} \cos c}{5!} & \frac{-a b^{4} \sin c}{4!} & \frac{-a b^{3} \cos c}{3!} & \frac{a b^{2} \sin c}{2!} & a b \cos c & -a \sin c
\end{array}\right]^{T}
$$

Corollary 2. The apscissas and ordinates of the control points of sine wave $\alpha(t)=(t, a \sin b t)$ as a $5^{\text {th }}$ order Bezier path are given in the following way, respectively, where $\left[B^{5}\right]^{-1}$ is the inverse of any $5^{\text {th }}$ order Bezier path matrix

$$
x_{0}=0 x_{1}=\frac{1}{5} x_{2}=\frac{2}{5} x_{3}=\frac{3}{5} x_{4}=\frac{4}{5} x_{5}=1
$$

and

$$
\left[\begin{array}{llllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5}
\end{array}\right]^{T}=\left[B^{5}\right]^{-1}\left[\frac{a b^{5} \cos c}{5!} \frac{-a b^{4} \sin c}{4!} \frac{-a b^{3} \cos c}{3!} \frac{a b^{2} \sin c}{2!} a b \cos c-a \sin c\right]^{T}
$$

Corollary 3. The coefficients of the $[t, a \sin (b t-c)]$ based on the only ordinates of the control points of the $5^{\text {th }}$ order Bezier path are:

$$
\begin{array}{rr}
\frac{1}{120} a b^{5} \cos c & =5 y_{1}-y_{0}-10 y_{2}+10 y_{3}-5 y_{4}+y_{5} \\
-\frac{1}{24} a b^{4} \sin c & =5 y_{0}-20 y_{1}+30 y_{2}-20 y_{3}+5 y_{4} \\
-\frac{1}{6} a b^{3} \cos c & =30 y_{1}-10 y_{0}-30 y_{2}+10 y_{3} \\
\frac{1}{2} a b^{2} \sin c & =10 y_{0}-20 y_{1}+10 y_{2} \\
a b \cos c & =5 y_{1}-5 y_{0} \\
-a \sin c & =y_{0}
\end{array}
$$

Sine wave as a $7^{\text {th }}$ order Bezier path

In this section it will be focused on how it can be writen the sine wave as a $7^{\text {th }}$ order Bezier path. Hence, we need to coefficients matrix of $7^{\text {th }}$ order Bezier path which is given by the following theorem.

Theorem 4. The coefficients matrix and the inverse matrix of any $7^{\text {th }}$ order Bezier path are (for more detail see [13]):

$$
\left[B^{7}\right]=\left[\begin{array}{cccccccc}
-1 & 7 & -21 & 35 & -35 & 21 & -7 & 1 \\
7 & -42 & 105 & -140 & 105 & -42 & 7 & 0 \\
-21 & 105 & -210 & 210 & -105 & 21 & 0 & 0 \\
35 & -140 & 210 & -140 & 35 & 0 & 0 & 0 \\
-35 & 105 & -105 & 35 & 0 & 0 & 0 & 0 \\
21 & -42 & 21 & 0 & 0 & 0 & 0 & 0 \\
-7 & 7 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[B^{7}\right]^{-1}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{7} & 1 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{21} & \frac{2}{7} & 1 \\
0 & 0 & 0 & 0 & \frac{1}{35} & \frac{1}{7} & \frac{3}{7} & 1 \\
0 & 0 & 0 & \frac{1}{35} & \frac{4}{35} & \frac{2}{7} & \frac{4}{7} & 1 \\
0 & 0 & \frac{1}{21} & \frac{1}{7} & \frac{2}{7} & \frac{10}{21} & \frac{5}{7} & 1 \\
0 & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{4}{7} & \frac{5}{7} & \frac{6}{7} & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

In this section it has been focused on sine wave as a $7^{\text {th }}$ order Bezier path. First we will examine $f(x)=\sin x$.

Theorem 6. The numerical matrix representation of the sine wave $f(x)=\sin x$ as a $7^{\text {th }}$ order Bezier path is:

$$
(t, \sin t)=\left[\begin{array}{llllllll}
t^{7} & t^{6} & t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{7}\right]\left[\begin{array}{cccccccc}
0 & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{4}{7} & \frac{5}{7} & \frac{6}{7} & 1 \\
0 & \frac{1}{7} & \frac{2}{7} & \frac{89}{210} & \frac{58}{105} & \frac{1681}{2520} & \frac{107}{140} & \frac{4241}{5040}
\end{array}\right]^{T}
$$

where the control points are $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7}.
Proof. For sine function $f(x)=\sin x$, the $7^{\text {th }}$ degree Maclaurin series expansion and parametric form is:

$$
(t, \sin t)=\left(t, t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}\right)=\left(t, a_{7} t^{7}+a_{6} t^{6}+a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a t_{1}+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $7^{\text {th }}$ order Bezier path as in:

$$
(t, \sin t)=\left[\begin{array}{c}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{1^{7}}{7!} & 0 & \frac{1}{5!} & 0 & -\frac{1^{3}}{3!} & 0 & 1 & 0
\end{array}\right]^{T}=\left[\begin{array}{c}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\left[B^{7}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6} \\
P_{7}
\end{array}\right]
$$

Solving the equation we get the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7}.
Theorem 7. The matrix representation of the sine wave of function $f(x)=\operatorname{asin} b x$ as any $7^{\text {th }}$ order Bezier path based on the coefficients is:

$$
(t, a \sin b t)=\left[\begin{array}{c}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[B^{7}\right]\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{7} & \frac{1}{7} a b \\
\frac{2}{7} & \frac{2}{7} a b \\
\frac{3}{7} & \frac{3}{7} a b-\frac{1}{210} a b^{3} \\
\frac{4}{7} & \frac{4}{7} a b-\frac{2}{105} a b^{3} \\
\frac{5}{7} & \frac{1}{2520} a b^{5}-\frac{1}{21} a b^{3}+\frac{5}{7} a b \\
\frac{6}{7} & \frac{1}{420} a b^{5}-\frac{2}{21} a b^{3}+\frac{6}{7} a b \\
1 & -\frac{1}{5040} a b^{7}+\frac{1}{120} a b^{5}-\frac{1}{6} a b^{3}+a b
\end{array}\right]
$$

with the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7} have as the apscissas:

$$
x_{0}=0, x_{1}=\frac{1}{7}, x_{2}=\frac{2}{7}, x_{3}=0, x_{4}=\frac{2}{7}, x_{5}=\frac{2}{7}, x_{6}=\frac{2}{7}, x_{7}=1
$$

and the ordinates:

$$
\begin{array}{r}
y_{0}=0 y_{1}=\frac{1}{7} a b y_{2}=\frac{2}{7} a b y_{3}
\end{array}=\frac{3}{7} a b-\frac{1}{210} a b^{3} y_{4}=\frac{4}{7} a b-\frac{2}{105} a b^{3} .
$$

Proof. For sine function $f(x)=a \sin b x$, the $7^{\text {th }}$ degree Maclaurin series expansion is:

$$
f(x)=\sum_{n=0}^{7}(a \sin b x)^{(n)}(0) \frac{x^{n}}{n!}=a b x-\frac{a b^{3} x^{3}}{3!}+\frac{a b^{5} x^{5}}{5!}-\frac{a b^{7} x^{7}}{7!}
$$

This $7^{\text {th }}$ degree polynomial function can be written as in parametric form:

$$
(t, a \sin b t)=\left(t, \frac{a b^{5}}{5!} t^{5}-\frac{a b^{3}}{3!} t^{3}+a b t\right)=\left(t, a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Also this can be written in matrix form with the matrix representation of $7^{\text {th }}$ order Bezier path as in:

$$
\left.(t, a \sin b t)=\left[\begin{array}{c}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{\mathrm{ab}^{7}}{7!} & 0 & \frac{\mathrm{ab}^{5}}{5!} & 0 & -\frac{a b^{3}}{3!} & 0 & \mathrm{ab} & 0
\end{array}\right]=\left[\begin{array}{c}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]^{T}\right]\left[B^{7}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6} \\
P_{7}
\end{array}\right]
$$

Solving the equation we get the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7} as in the result of the matrix product:

$$
\left[\begin{array}{llllllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & P_{7}
\end{array}\right]^{T}=\left[B^{7}\right]^{-1}\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{a b^{7}}{7!} & 0 & \frac{a b^{5}}{5!} & 0 & -\frac{a b^{3}}{3!} & 0 & a b & 0
\end{array}\right]^{T}
$$

Theorem 8. The matrix representation of the sine wave of $f(x)=a \sin (b x-c)$ as a $7^{\text {th }}$ order Bezier path is:

$$
[t, a \sin (b t-c)]=\left[\begin{array}{llllllll}
t^{7} & t^{6} & t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[B^{7}\right]\left[\begin{array}{llllllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & P_{7}
\end{array}\right]^{T}
$$

where the control points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7} are:

$$
\left[\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6} \\
P_{7}
\end{array}\right]\left[\begin{array}{cc}
0 & -a \sin c \\
\frac{1}{7} & \frac{1}{7} a b \cos c-a \sin c \\
\frac{2}{7} & --\frac{a b^{2}}{210} \cos c+\frac{1 a b^{2}}{14} \sin c+\frac{3 a b}{7} \cos c-\frac{1 a b^{2}}{14} \sin c+\frac{3 a b}{7} \cos c-a \sin c \\
\frac{4}{7} & -\frac{a b^{4} \sin c}{840}-\frac{2 a b^{3} \cos c}{105}+\frac{a b^{2} \sin c}{7}+\frac{4 a b \cos c}{7}-a \sin c \\
\frac{5}{7} & \frac{a b^{5} \cos c}{2520}-\frac{a b^{4} \sin c}{168}-\frac{a b^{3} \cos c}{21}+\frac{5 a b^{2} \sin c}{21}+\frac{5 a b \cos c}{7}-a \sin c \\
\frac{5}{7} & \sin c+\frac{a b^{5} \cos c}{420}-\frac{a b^{4} \sin c}{56}-\frac{2 a b^{3} \cos c}{21}+\frac{5 a b^{2} \sin c}{14}+\frac{6 a b \cos c}{7} a \sin c \\
\frac{-a b^{7}}{5040} \cos c+\frac{a b^{6}}{720} \sin c \frac{a b^{5} \cos c}{120}-\frac{a b^{4} \sin c}{24}-\frac{a b^{3} \cos c}{6}+\frac{a b^{2} \sin c}{2}+a b \cos c-a \sin c
\end{array}\right]
$$

Proof. Lets examine the sine wave $f(x)=a \sin (b x-c)$ as a $7^{\text {th }}$ order Bezier path. First we need to write $f(x)=a \sin (b x-c)$ in Maclaurin series expansion. For sine function $7^{\text {th }}$ degree Maclaurin series expansion is:

$$
\begin{gathered}
f(x)=\sum_{n=0}^{7}[a \sin (b x-c)]^{(n)}(0) \frac{x^{n}}{n!}= \\
=-a(\sin c)+a b(\cos c) x+\frac{a b^{2} \sin c}{2!} x^{2}+\frac{-a b^{3}(\cos c)}{3!} x^{3}+ \\
+\frac{-a b^{4}(\sin c)}{4!} x^{4}+\frac{a b^{5}(\cos c)}{5!} x^{5}+\frac{a b^{6}(\sin c)}{6!} x^{6}+\frac{-a b^{7}(\cos c)}{7!} x^{7}
\end{gathered}
$$

It can be written as in parametric form and a $7^{\text {th }}$ degree polynomial function:

$$
\begin{aligned}
& {[t, a \sin (b t-c)]=\left(t, \frac{-a b^{7} \cos c}{7!} t^{7}+\frac{a b^{6} \sin c}{6!} t^{6}+\frac{a b^{5} \cos c}{5!} t^{5}+\right.} \\
& \left.+\frac{-a b^{4} \sin c}{4!} t^{4}+\frac{-a b^{3} \cos c}{3!} t^{3}+\frac{a b^{2} \sin c}{2!} t^{2}+a b t(\cos c)-a \sin c\right)
\end{aligned}
$$

Also this can be written in matrix form with the matrix representation of $7^{\text {th }}$ order Bezier path as in:

$$
[t, a \sin (b t-c)]=\left(t, a_{7} t^{7}+a_{6} t^{6}+a_{5} t^{5}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}\right)
$$

Hence we have:

$$
\left.\left.\begin{array}{rl}
{[t, \operatorname{asin}(b t-c)]} & =\left[\begin{array}{l}
t^{7} \\
t^{6} \\
t^{5} \\
t^{4} \\
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{a b^{7} \cos c}{7!} & \frac{a b^{6} \sin c}{6!} & \frac{a b^{5} \cos c}{5!} & \frac{-a b^{4} \sin c}{4!} & \frac{-a b^{3} \cos c}{3!} & \frac{a b^{2} \sin c}{2!} & a b c o s c & -a s i n c
\end{array}\right] \\
& =\left[\begin{array}{llllllllll}
t^{7} & t^{6} & t^{5} & t^{4} & t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{llllll}
B^{7}
\end{array}\right]\left[\begin{array}{llllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5}
\end{array} P_{6}\right. \\
P_{7}
\end{array}\right]^{T}\right]
$$

Solving the equation we get the control points as in the result of the matrix product:

$$
\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3} \\
P_{4} \\
P_{5} \\
P_{6} \\
P_{7}
\end{array}\right]=\left[B^{7}\right]^{-1}\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-\frac{\mathrm{ab}^{7} \cos c}{7!} & \frac{a b^{6} \sin c}{6!} & \frac{a b^{5} \cos c}{5!} & \frac{-a b^{4} \sin c}{4!} & \frac{-a b^{3} \cos c}{3!} & \frac{a b^{2} \sin c}{2!} & \text { abcosc} & -\mathrm{asinc}
\end{array}\right]^{T}
$$

Corollary 4. The apscissas and ordinates of the control points of sine wave $\alpha(t)=[t, a \sin (b t-c)]$ as a $7^{\text {th }}$ order Bezier path are given in the following way respectivly, where $\left[B^{7}\right]^{-1}$ is inverse of any $7^{\text {th }}$ order Bezier path matrix:

$$
x_{0}=0 x_{1}=\frac{1}{7} x_{2}=\frac{2}{7} x_{3}=\frac{3}{7} x_{4}=\frac{4}{7} x_{5}=\frac{5}{7} x_{6}=\frac{6}{7} x_{7}=1
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7}
\end{array}\right]^{T}=} \\
& =\left[B^{7}\right]^{-1}\left[-\frac{a b^{7} \cos c}{7!} \frac{a b^{6} \sin c}{6!} \frac{a b^{5} \cos c}{5!} \frac{-a b^{4} \sin c}{4!} \frac{-a b^{3} \cos c}{3!} \frac{a b^{2} \sin c}{2!} a b \cos c-a \sin c\right]
\end{aligned}
$$

Corollary 5. The coefficients $[t, a \sin (b t-c)]$ of based on the ordinates of control points of the $7^{\text {th }}$ order Bezier path are:

$$
\left[\begin{array}{c}
-\frac{a b^{7} \cos c}{7!} \\
\frac{a b^{6} \sin c}{6!} \\
\frac{a b^{5} \cos c}{5!} \\
\frac{-a b^{4} \sin c}{4!} \\
\frac{4!}{4!} \cos c \\
\frac{-a b^{2} \sin c}{2!} \\
a b \cos c \\
-a \sin c
\end{array}\right]=\left[\begin{array}{c}
7 y_{1}-y_{0}-21 y_{2}+35 y_{3}-35 y_{4}+21 y_{5}-7 y_{6}+y_{7} \\
7 y_{0}-42 y_{1}+105 y_{2}-140 y_{3}+105 y_{4}-42 y_{5}+7 y_{6} \\
105 y_{1}-21 y_{0}-210 y_{2}+210 y_{3}-105 y_{4}+21 y_{5} \\
35 y_{0}-140 y_{1}+210 y_{2}-140 y_{3}+35 y_{4} \\
105 y_{1}-35 y_{0}-105 y_{2}+35 y_{3} \\
21 y_{0}-42 y_{1}+21 y_{2} \\
7 y_{1}-7 y_{0} \\
y_{0}
\end{array}\right]
$$

References

[1] ${ }^{* * *}$, Derivatives of a Bezier Curve, https://pages.mtu.edu/ shene/COURSES/ cs362n/NOTES/spline /Bezier/ bezier-der. html
[2] Marsh, D., Applied Geometry for Computer Graphics and CAD, Springer Science and Business Media, 2006
[3] Tas, F., Ilarslan, K., A New Approach to Design the Ruled Surface, International Journal of Geometric Methods in Modern Physics, 16 (2019), 6, 1950093
[4] Hagen, H., Bezier-Curves with Curvature and Torsion Continuity, Rocky Mountain J. Math., 16 (1986), 3, pp. 629-638
[5] Zhang, H., Jieqing, F., Bezier Curves and Surfaces (2)., State Key Lab of CAD\&CG Zhejiang University, 2006
[6] Michael, S., Bezier Curves and Surfaces, in: Encyclopedia of Applied and Computational Math., Lecture 8, pp. 113-115, Spreinger, New York, USA, 2003
[7] Farin, G., Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, New York, USA, 1996
[8] Kilicoglu, S., Senyurt, S., On the Involute of the Cubic Bezier Curve by Using Matrix Representation in E^{3}, European Journal of Pure and Applied Mathematics, 13 (2020), 2, pp. 216-226
[9] Levent, A., Sahin, B., Cubic Bezier-Like Transition Curves with New Basis Function, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 44 (2008), 2, pp. 222-228
[10] Kilicoglu, S., Senyurt, S., On the Matrix Representation of 5th Order Bezier Curve and Derivatives, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 71 (2022), 1, pp. 133-152
[11] Kilicoglu, S., Senyurt, S., On the Mannheim Partner of a Cubic Bezier Curve in E ${ }^{3}$, International Journal of Maps in Mathematics, 5 (2022), 2, pp. 182-197
[12] Kilicoglu, S., Senyurt, S., On the Matrix Representation of Bezier Curves and Derivatives in E3³ Sigma J. Engineering and Natural Sci, in Press 2022
[13] Kilicoglu, S., Senyurt, S., How to find Bezier Curves in E^{3}, Communications in Advanced Mathematical Sciences, 5 (2022), 1, pp. 12-24
[14] Kilicoglu, S., Senyurt, S., On the Cubic Bezier Curves in E^{3}, Ordu University Journal of Science and Technology, 9 (2019), 2, pp. 83-97
[15] Kilicoglu, S., Senyurt, S., An Examination on to Find 5 ${ }^{\text {th }}$ Order Bezier Curve in E ${ }^{3}$, Journal of New Theory, 37 (2021), Dec., pp. 35-44

[^0]: * Author's e-mail: seyda@baskent.edu.tr

