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In this paper, univariate Pade approximation is applied to fractional power se-
ries solutions of fractional integro-differential equations with non-local boundary 
conditions. As it is seen from comparisons, univariate Pade approximation gives 
reliable solutions and numerical results. 
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Introduction  

In the last few decades, fractional calculus became more popular due to its wide 
range of applications in various fields. Some recent applications of fractional calculus are in-
vestigated in the fields of science and engineering such as viscoelasticity [1-3], signal pro-
cessing [4], physics [5, 6], bioengineering [7, 8], hydrology [9] and biology [10, 11]. For the 
details, the development of fractional calculus can be found in Podlubny [12]. It can be said 
that fractional calculus deals with the concept of non-integer order integrals and derivatives. 
The Riemann-Liouville and Caputo fractional derivatives are considered as the classical frac-
tional derivatives.  

It is known that fractional integro-differential equations (FIDE) are a combination of 
fractional derivative and integral terms. It can be said that many research works have been 
done for analytical and numerical methods to solve the FIDE. The adaptive Huber scheme for 
weakly singular FIDE was presented by the authors in [13]. The Tau approximation method 
was applied to solve the space fractional diffusion equation by Saadatmandi and Dehghan 
[14]. The collocation method with convergence were applied to solve the generalized FIDE 
by Sharma et al. [15]. Legendre collocation method was presented by Saadatmandi and 
Dehghan [16] to solve the FIDE. The approximation of fractional integrals and Caputo deriva-
tives with applications in solving Abel’s integral equation were presented by Kumar et al. 
[17], The Volterra integro-differential equations were presented for investigating the fractal 
heat-transfer by Yang et al. [18]. 

The idea of univariate and multivariate Pade approximations are based on expanding 
a function as a ratio of two power series and determining both the numerator and denominator 
coefficients using the coefficients of Taylor series expansion of a function f(x) [19]. Many au-
thors applied univariate and multivariate Pade approximation on different type of differential 
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equations of integer and fractional order [20-26]. More details can be found about univariate 
and multivariate Pade approximations in [19, 27].  

In this paper univariate Pade approximation was applied on the frractional power se-
ries solution of FIDE of the form [28]: 

 1 2D ( ) ( ) ( , ) ( )d ( , ) ( )d
x b

q

a a

y x f x k x t y t t k x t y t t= + +   (1) 

1 ,m q m−    a x b   and m  with the non-local boundary conditions: 
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where Dq denotes a differential operator with fractional order , ( )q f x  and ( , )ik x t , (i = 1, 2) 
are holomorphic functions, ( )iH t  – a continuous function, , ,ij ij i    and id  (i = 1, 2, …, m)  
are constants and ( )y x  is the function of class C, a class of functions that are piecewise con-
tinuous on (0, )J  =   and integrable on any finite subinterval [0, )J =  . 

The fractional differential transform method (FDTM) 

Let us expand the analytic function ( )f x  as the fractional power series: 
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where   is the order of the fraction and ( )F k  is the fractional differential transform of ( )f x  
In order to avoid fractional initial and boundary conditions, it is defined the fractional deriva-
tive in the Caputo sense. The relation between the Riemann-Liouville and Caputo operators is 
given by: 
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Replacing ( )f t  by: 
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in (5) and using (4), it is obtained the fractional derivative in the Caputo sense as [28]: 

 
0

1
( )

0 0
0

1

1( ) ( ) ( )
!1 dD ( ) d

( ) d ( )

m
k k

m
q k

x m q m

f t x x f x
k

f x t
m q x x t

−

=
 + −

− −

=
 − −


  (7) 

Since the initial conditions are implemented by the integer-order derivative, the 
transformations of the initial conditions for are 0,1,..., ( 1)k q= − defined by:  
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where q is the order of the corresponding fractional equation [28]. More details about 
definitions and theory differential Transform Method and fractional Differential Transform 
Method can be found in [29-31].  

Univariate Pade approximation  

Consider a formal power series: 

 2
0 1 2( ) ...f x c c x c x= + + +   (9) 

with 0( 0)c   [27]. The Pade approximation problem of order (m, n)  or [m, n] for f consists in 
finding polynomials: 
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such that in the power series (fq – p) [25]. To find the coefficients we get following linear sys-
tems of equations: 
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with ci = 0 for 0i   [27].

 

 
In general a solution for the coefficients ia  is known after substitution of a solution 

for the ib in the left hand side of (11). So the crucial point is to solve the homogeneous system 
of n  eq. (12) in the n + 1 unknowns ib . This system has at least one nontrivial solution be-
cause one of the unknowns can be chosen freely [27]. 

In short, by solving eqs. (11) and (12) the coefficients ia  and ib  are found. Then the 
Pade eqs. (10) are found. After finding these polynomials we get The Pade approximation of 
order (m, n)  or [m, n] for f. 

Applications and results 

In this section univariate Pade series solutions of FIDE with non-local boundary 
conditions shall be illustrated by two examples. The full FDTM solutions of examples can be 
seen in [28]. 
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Example 1. 
Consider the following linear FIDE with the given non-local condition: 
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2 2 22 2
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32
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where the order of fraction is 2 = . The exact solution is for eq. (13) is given as ( )y x x= in 
[28]. Nazari and Shahmorad obtained following solution (15) by applying FDTM on eqs. (13) 
and (14). 
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By applying eqs. (11) and (12) to put eq. (15) into Pade series, following Pade 
equations respectively 10,8 ( ),r x  10,7 ( ),r x and 10,6 ( )r x  were obtained for different values of m 
and n: 
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7 6
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 3/2 2 5/2 31.584692126 1.054710779 3.650619218 0.1360529783 )x x x x+ + − −  (18) 

Table 1. Numerical values for exact solution y(x) = x, y1(x) (FDTM Solution) and  

Pade approximations of y1(x) 

 

   
Figure 1. y (x) = x, y1 (x), r10,8 (x) Figure 2. y (x) = x, y1 (x), r10,7 (x) Figure 3. y (x) = x, y1 (x), r10,6 (x) 

Example 2. 
Consider the following fractional integro-differential equation: 

 
1

5/4

0

D ( ) (cos sin ) ( ) ( ) sin ( )dy x x x y x f x ty t t= − +   (19) 

with the non-local conditions: 
1

0

e 1 1 e(0) (1) (0) (1) ( )d 0, 2 (0) 2 (1) (0) (1) 0
e 2 2 e 2

y y y y ty t t y y y y
+   

   + + + − = + + − =   
+ +   

 (20) 

x  r10,8 (x) r10,7 (x) r10,6 (x) y1 (x) y (x) = y 

10.0  10.00008692 10.00023159 10.00069340 818.7945465  10.0 

10.1 10.10008795 10.10023566 10.10071050 902.7897906  10.1 

10.2  10.20008899 10.20023976 10.20072790 994.5386236  10.2 

10.3  10.30009003 10.30024389 10.30074553 1094.671666  10.3 

10.4  10.40009106 10.40024804 10.40076340 1203.863979  10.4 

10.5  10.50009210 10.50025221 10.50078152 1322.837711  10.5 

10.6  10.60009315 10.60025641 10.60079990 1452.364894  10.6 

10.7  10.70009418 10.70026064 10.70081851 1593.270362  10.7 

10.8  10.80009522 10.80026488 10.80083740 1746.434824  10.8 

10.9  10.90009626 10.90026915 10.90085652 1912.798074  10.9 

11.0  11.00009730 11.00027344 11.00087591 2093.362350  11.0 
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Function ( )f x  and exact solution of eq. (19) are respectively given as: 

( )

3/48( ) 2cos 2 sin 2
3 3/4

x
f x x x x−= − +


 

and 2( )y x x=  in [28] by Nazari and Shahmorad. 
Nazari and Shahmorad obtained following solution (21) by applying FDTM on (19) 

and (20): 
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By applying eqs. (11) and (12) to put eq. (21) into Pade series, following Pade equ-
ations respectively r10,5(x),r10,4(x), and r10,3(x), were obtained for different values of m and n. 
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7 1/4
10,3

6 3/4 7 5/4

3/2 6 7/4 2

8 9/4

( ) (2.944700000 10 89.38050004 0.00001481139537

7.919819617 10 1.279600000 10 38.83970816
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r x x x

x x x

x x x
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−
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 8 1/4 3/43.035300711 10 50.29848664 26.89516629 )x x x−  + +  (24) 
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Table 2. Numerical values for exact solution y(x) = x2, y2(x) (FDTM Solution) and  

Pade approximations of y2(x)  

 

   
Figure 4. y(x) = x2, y2(x), r10,5(x) Figure 5. y(x) = x2, y2(x), r10,4(x) Figure 6. y(x) = x2, y2(x), r10,3(x) 

Conclusion 

As it is seen from the tables and figures in two examples, it can be said that obtained 
numerical results by using univariate Pade approximation are very powerful and efficient. Es-
pecially to show the efficiency of Pade approximation on figures, a very large interval has 
been chosen. The proposed method is very simple in application and is more accurate in com-
parison with other mentioned method. 
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