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In this study, the meshless collocation approach is used to determine the numerical 
solution the generalized time-fractional Gardner equation. The Crank-Nicolson 
technique is used to approximate space derivatives, whereas the Caputo derivative 
of fractional order is used to approximate the first order time fractional derivative. 
The numerical solutions, which show the method’s efficacy and accuracy, are pro-
vided and discussed. The numerical solution shows that our method is effective in 
producing extremely accurate results. 
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Introduction

The history of fractional calculus (FC) is as old as that of classical calculus (or integer 
order calculus). In the beginning, the idea of FC was developed slowly. However, it has gained the 
intensive attention of researchers in the past few decades due to its increasing applications in en-
gineering and science. Fractional derivatives are commonly used to describe the various materials 
and processes with memory and hereditary properties. In 1695, when Newton and Leibniz had just 
been introduced classical calculus, L’Hospital and Leibniz discussed the meaning of the derivative 
of order 1/2. After that, many mathematicians worked on this question, which gave rise to the de-
velopment of FC. Abel, Riesz, Liouville, Laplace, Grunwald, Erdelyi, Fourier, Letnikov, Riemann, 
Marchaud, and Levy worked on the fractional derivatives in the middle of last century [1].

In order to solve numerous physical models, fractional PDE are utilized to simulate 
problems that are functions of various variables. The fractional derivatives in these equations, 
however, prevent any approach from offering a closed-form solution for non-linear FPDEs. 
Consequently, there is growing demand for an effective and reliable numerical approach to 
solve these types of problems [2-12].
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The Gardner equation (GE), which is derived to explain the internal solitary waves 
in shallow water, is a related merging of the Korteweg-de Vries (KdV) and modified KdV 
equations. The GE is frequently used in many areas of physics, including fluid physics, plasma 
physics, and quantum field theory. It also discusses how wave phenomena spread in plasma 
and solid states. The non-linear propagation of ion-acoustic waves in an unmagnetized plasma 
composed of negative ions, non-thermal electrons, positive ions, and a negative-ion beam with 
the Tsallis distribution [13] is studied using time fractional GE (TFGE) in plasma physics. In 
this study, we take into account the generalized TFGE (GTFGE):
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where ψ(x, t) is the source term, ξ – the time fractional derivative order, ∂ξw/∂tξ is fractional 
derivative in the Caputo sense, A1 and A2 are the non-linear coefficients and A3 is dispersion 
coefficient [13]. The system is affected by the time fractional derivative order ξ. An increase in 
the time fractional derivative order ξ value can reduce the system’s non-linearity and the ampli-
tudes of the solitary pulses [13]. It is also concluded that time fractional order introduces higher 
order non-linearity or dispersion relationships into the plasma system, which plays an important 
role in varying the amplitude of solitary waves.

Formulation of the numerical scheme

Time fractional derivative

The time fractional derivative ∂ξw(x, t)/ ∂tξ in eq. (1), is the Caputo fractional deriva-
tive [8], which can be written:
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where ξ is order of fractional derivative, tm = mΔt, m = 0, 1, 2,...,N and Δt – the time step. The 
finite difference scheme is used to discretize the classical derivative term:
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the first order time derivative appearing in eq. (3) is approximated:
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and w(x, t = 0) = w0(x) is initial condition (IC).

Finally, eq. (5) can be written in precise form as: 
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Space fractional derivative

In the next step, the meshless collocation method is applied and w(x, tm+1) is collocat-
ed by the RBF. The solution is interpolated at M different collocation points xj| j = 1, 2,..., M, 
where xj| j ∈ Ω are interior points while x1 and xM are boundary points, Ω represents a bounded 
domain and ∂Ω is its boundary. The numerical solution of w(x, tm+1) can be expressed in terms 
of the RBF:
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where i = 1, 2,..., M, λjm+1 are the unknown coefficients at the (m + 1)th time level, φ(dij) is the 
RBF, and ||.|| is Euclidean norm and dij = ||xi – xj||. 

Equation (7) can be written in matrix form:
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where
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and the collocation matrix S0 is given:
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Numerical experiments

In this section, the proposed meshless collocation method is applied to solve the gov-
erning eq. (1). We have applied schemes over three problems including 1-D TFPDE. We have 
utilized the following error norms:
	 = | ( ) ( ) |EXACT APPE max w i w i∞ −

where i = 1, 2, ... , M, wEXACT, and wAPP represents exact solution and approximate solution, respectively. 
Example 1. Consider eq. (1). In [13], linear dispersion relationship is given by the formula:
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In eq. (1), the non-linear coefficients A1, A2 and dispersion coefficients A3: 
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The rarefactive solitary wave solution of eq. (1) can be obtained by taking the initial 
value of the classical Gardner equation as the zeroth order approximation:
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Because of the absence of the exact solution, the convergence of the method is as-
sessed by the well known double mesh principle and the results are mentioned in tab. 2. Table 
1 shows the numerical solutions for the different values of the time step size Δt for t and x. In 
fig. 1, the numerical solutions at different values of ξ are plotted which demonstrates that by 
increasing the value of ξ the amplitude and steepness decreases. Figure 2 is devoted to plot-
ting the numerical values at different values of t, which shows that the smoothness increases 
by increasing time, t. In fig. 3, the 3-D plots of the numerical solutions are plotted against the 
position x and time, t. Consider c = 1500, γ = 0.1, β = 0.1, α = 0.2, ϑ = 0.7, υ1= 0.5, υ1= 0.8, and 
k = 1.8 in Test Problem 1. 

Table 1. Numerical values for different values of Δt at ξ = 0.8,  
t = 0.1, and M = 81 considered in Test Problem 1

 x/Δt  0.0001  0.0005  0.001  0.005
1.1  –0.32472  –0.32471  –0.32470  –0.32461 
1.2  –0.26689  –0.26689  –0.26688  –0.26683 
1.3  –0.21914  –0.21913  –0.21913  –0.21910 
1.4  –0.17982  –0.17982  –0.17981  –0.17979 
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Table 2. The E∞ for different values of M and ξ for Test Problem 1
 ξ/M  20  40  80  160 
0.30 3.4030 ⋅ 10–1  1.1500 ⋅ 10–2  2.8000 ⋅ 10–2  5.0500 ⋅ 10–3 
0.60  2.0010 ⋅ 10–1  3.8900 ⋅ 10–2  2.3000 ⋅ 10–3  9.2000 ⋅ 10–3 
0.75  1.4930 ⋅ 10–1  3.1500 ⋅ 10–2 1.9000 ⋅ 10–3  7.6000 ⋅ 10–3 

       
Figure 1. Numerical solution for different 
values of ξ at t = 0.1, Δt = 0.005, and  
M = 101 for Test Problem 1

Figure 2. Numerical solution for different 
values of t at ξ = 0.75, Δt = 0.005, and  
M = 101 for Test Problem 1

Conclusion

In this work, the meshless collocation method is applied to find the numerical solution 
of GTFGE. The time derivative is considered in Caputo sense, and the scheme is derived for  
0 < ξ < 1. Different Test Problems are included to check the efficiency and accuracy of the 
scheme, and that the current method is basic and simple. The effect of the fractional order on 
the solution is discussed with the help of figures in all of the Test Problems, and it is concluded 
that the fractional order derivative plays a significant role in accuracy, as well as in variation in 
amplitude (either increasing or decreasing).
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Figure 3. Time evolutions 
of rarefactive solitary wave 
solution of TFGE with ξ = 0.5,  
t = 0.1, Δt = 0.005, and M = 21 
for Test Problem 1
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