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In this study, we use an effective meshless method to estimate the numerical solu-
tion of 3-D time-fractional Sobolev equation. The recommended meshless method 
is used for the spatial derivatives while the Liouville-Caputo derivative technique 
is utilized for the time derivative portion of the model equation. Accuracy of the 
method is assessed via error norms and comparison is made with the exact solution 
and other numerical methods given in more current literature, which demonstrated 
that the suggested strategy produces excellent performance and is more computa-
tionally efficient. 
Key words: local meshless method, Liouville-Caputo derivative,  

3-D Sobolev equations, irregular domain 

Introduction

In a later decade, there was a lot of attention given to fractional PDE with time-frac-
tional derivatives. It emerged to become a cutting-edge instrument for the more accurate de-
scription of numerous physical and technical processes. The FPDE contains the unknown mul-
tivariable function and its fractional partial derivatives. The FPDE are used to model problems 
with functions of several variables, to find solution of many physical models. Essential infor-
mation about the fractional calculus can be found in [1]. We consider a class of 3-D Sobolev 
equations which are defined:
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where ∇2 and ∇ are the Laplacian Gradient operators, respectively, and β, γ, and δ is the known 
constants. Moreover, ∂α/∂tα represent the Caputo derivative [2] for 0 < α ≤ 1, for W(r, t).

Practically in all areas of mathematics and physics, meshless approaches have lately 
been proven to be useful tools for solving diverse PDE models. The most popular of these are 
meshless approaches based on the radial basis function (RBF). Because of their meshless char-
acteristics, these approaches are particularly well-liked by researchers. A variety of physical 
issues can be addressed using meshless approaches [3-6]. The most prominent drawbacks of 
meshless approaches are the dense ill-conditioned matrices and picking the ideal shape pa-
rameter value. To address these issues, researchers created the local meshless method, which 
is reliable and efficient in solving a variety of fractional and integer order PDE models [7, 8]. 
In comparison the global meshless version, these approaches yield sparse matrices that are 
well-conditioned and are less sensitive to shap parameter selection. These methods have recent-
ly undertaken testing in several applications [9-16].

The local meshless method (LMM) is included in this study to numerically simulate 
the time-fractional model (1). In addition, numerical examinations take into account both reg-
ular and irregular domains.

Local meshless scheme

In the proposed methodology, the derivatives of W(r ¯, t) are approximated at the cen-
ters r ¯h by the neighborhood of r ¯h:

	 1 2 3 1 2{ , , ,..., } { , , , }, nnh h h hn N hhr r r r r r r n N⊂  

where h = 1, 2,..., Nn. In case of 1-D, 2-D, and 3-D case r ¯ = x, r ¯= (x, y), and r ¯= (x, y, z), respec-
tively.

Procedure for 1-D case:
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Substituting RBF ψ||x – xp|| in eq. (3):
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The derivatives of W(x, y, t) w.r.t. x and y can be found:

	

( )( ) 2

=1

( , ) ( , ), = 1,2, ,
nh

mm
x h h hk hkk

k

W x y W x y h Nγ≈∑ 

	

	

( )( ) 2

=1

( , ) ( , ), = 1,2, ,
nh

mm
y h h hk hkk

k

W x y W x y h Nη≈∑ 

For γk
(m) and ηk

(m) (k = 1, 2,..., nh), we get:

	

( ) ( )1

( ) ( )1

=

=

m m
nn nhh h

m m
nn nhh h

γ Φ

η Φ

−

−

A

A

Similar procedure can be adopted for 3-D case.

Time discretization

The Caputo derivative [2] is utilized for time-fractional derivative:
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We can obtain the derivative term as follows, where tq = qτ, q = 0, 1, 2,..., Q and time 
step size Δτ in [0, t]:
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Then:
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Numerical discussion

The proposed LMM is evaluated for its ability to accurately and efficiently approxi-
mate the solution of model eq. (1). One example is considered using scatted and uniform nodes 
with non-rectangular and rectangular domain. Throughout the paper, we have used IMQ RBF 
with shape parameter value c = 15 ⋅ 105. The local stencil seven in the spatial domain [0, 4] are 
utilized unless mentioned explicitly. For accuracy measurement, we used the following error 
norms:

( )
( )2

=1

ˆ
ˆmax( ) = max | | , =

N

i i
i

W
W RMS

N
ε

−

−
∑ W �

W
(8)

where W is the approximate solution and Ŵ is exact solution.
Example 1. The exact solution of the model (1) with β = 1, γ = δ = 0: 

( , ) = e sin( )sin( )sin( ),   = ( , , )tW r t x y z r x y z− π π π ∈Ω (9)

where the source function can be adjusted according to the exact solution.
Table 1 show the results of Example 1 for different values of α, t, N = 203, and  

τ = 0.0005. In comparison with the method given in [11], it is observed tat thee results of the 
LMM are superior. Figure 1 visualized the comparison of exact and numerical solutions of the 
LMM for different values time-fractional order α with N = 203, τ = 0.0005, and t = 1 and a good 
agreement has been found.

Numerical results for non-uniform nodes in non-rectangular domain are calculated in 
term of RMS and max(ε) at different time t which are visualized in fig. 1. It can be observed that 
the LMM can produced accurate results in case of non-rectangular domain. 
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Table 1. Example 1, results of the LMM
 α = 0.5 α = 0.1 
 t Method max(ε) RMS max(ε) RMS Condition number

0.1 LMM 1.800 ⋅ 10–09 6.145 ⋅ 10–10 1.800 ⋅ 10–09 6.145 ⋅ 10–10 1.0000

[11] 1.885 ⋅ 10–07 5.777 ⋅ 10–08 1.885 ⋅ 10–07 5.777 ⋅ 10–08

0.4 LMM 5.335 ⋅ 10–09 1.821 ⋅ 10–09 5.335 ⋅ 10–09 1.821 ⋅ 10–09 1.0000

[11] 5.586 ⋅ 10–07 1.712 ⋅ 10–07 5.586 ⋅ 10–07 1.712 ⋅ 10–07

0.7 LMM 6.916 ⋅ 10–09 2.361 ⋅ 10–09 6.916 ⋅ 10–09 2.361 ⋅ 10–09 1.0000

[11] 7.242 ⋅ 10–07 2.219 ⋅ 10–07 7.242 ⋅ 10–07 2.219 ⋅ 10–07

LMM 7.320 ⋅ 10–09 2.498 ⋅ 10–09 7.320 ⋅ 10–09 2.498 ⋅ 10–09 1.0000

[11] 7.664 ⋅ 10–07 2.349 ⋅ 10–07 7.664 ⋅ 10–07 2.349 ⋅ 10–07

 

 
Figure 1. Example 1, numerical solution and exact solution at different α 

Figure 2. Example 1, (a) domain and (b) error in term of RMS max(ε) 

(a) (b)
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Conclusion

In order to explore 3-D time-fractional Sobolev equations, we have employed a real-
istic numerical technique termed the local meshless algorithm based on radial basis functions. 
The problem is discretized in the time direction using the Crank-Nicolson time-integration 
method first, and then the local meshless method is applied. In comparison methods described 
in recent literature, the current method constructed a sparse linear system of equations with an 
ideal lower condition number and accurately approximated the solution.
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