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In this framework, the effect of a Kerr-like medium and the coupling function de-
pendent on the number of photons operator on the interaction between a two-level 
atom and a non-linear field is studied. A relation between the Kerr-like medium 
parameter and the field-atom coupling parameter is used to obtain a simplified 
formula for Rabi frequency. The wave function of the proposed model is obtained, 
followed by the derivation of the phase distribution and from which the wehrl en-
tropy formula is calculated. The effect of the initial state and the non-linear func-
tion dependent on the number of photons operator and the Kerr-like medium on 
entanglement is calculated through the Wehrl entropy formula, wehrl distribution 
and the behaviour of photons by studying the correlation function. The entangle-
ment decreases when the function dependent on the number of photons operator is 
taken into account, while the entanglement gradually improves when the squeezed 
state is considered, and the entanglement decreases significantly when considering 
the Kerr medium. An oscillatory distribution is formed between the classical and 
non-classical in the coherent state. The non-classical distribution disappears when 
considering the squeezed state and the Kerr-like medium. 
Key words: Kerr like medium, Wehrl entropy; correlation function, von Neumann 

Introduction

It has been thoroughly investigated the importance of Kerr medium on the dynamical 
properties of a quantum states of light. It has been defined that, the Schroedinger's cat states is 
a superposition of coherent states which exhibit macroscopic properties for a large value of the 
relevant complex amplitude in the phase space [1-5]. For a 3-D circuit quantum electrodynamic 
structure, it has developed a Kerr regime that allows the interaction strength between the pho-
tons to exceed the loss rate [6]. This makes it easier to construct and manipulate superpositions 
of coherent states, which in turn enables the production of multicomponent cat states in an 
experimental setting. Tara et al. [7] it has been discovered that the coherent field propagating 
through a Kerr medium in a coherent state lead to Schrodinger macroscopic superposition states 
in addition the production superpositions of squeezed coherent states.

However, since they require lowering the variations of a single quadrature variable 
below the ground state uncertainty, the compressed states of the harmonic oscillator have at-
tracted a lot of experimental attention. These states are critical for enhancing interferometer 
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sensitivity in quantum metrology [8] and are also crucial for the new gravitational wave detec-
tion by high power laser interferometers [9]. The continuous variable quantum key distribution 
techniques [10] likewise depend on the compressed states, and they impart [11] an improvement 
over their coherent counterparts. Additionally, they have recently been employed as sensitive 
detectors for single-photon level photon scattering recoil events [12]. Additionally, Giacomo 
has researched the uncertainty relations for the Wehrl entropy and its link with quantum mem-
ory [13]. It is shown that the sequence of appropriate quantum Gaussian states asymptotically 
achieves the smallest conditional Wehrl entropy can be obtained for all quantum states with a 
given conditional von Neumann entropy. The dynamical behavior of the Wehrl entropy and its 
phase distribution has been investigate in many quantum systems such as, single Cooper-pair 
box in a cavity field in the presence of dissipation [14], field-superconducting under the effect of 
decoherence [15], moving four-level atom [16] and recently, two atoms in a dissipative cavity 
field under Kerr medium effect [17].

Entanglement, entropic uncertainty relations, and Wehrl entropy have recently been 
connected for many quantum states [18]. A quantifiable perfect witness for pure state bipartite 
entanglement may be obtained using the Wehrl mutual information, which also lowers the en-
tanglement entropy. However, the squeezed state is one of the non-classical electromagnetic 
field states, and as a result, some observables show fewer fluctuations than for the vacuum state 
[19-22]. It’s called the squeezed operator on the coherent state [19]. Many facets of squeezed 
displaced Fock states (SDFS), including squeezing and photon statistics, have been explored 
and researched [20]. The SDFS are a particular case of squeezed coherent states, squeezed num-
ber states [21], and two-photon coherent states (squeezed coherent states).

Recently, experimental reports have described the formation of non-classical states of 
motion for trapped ions, including Fock states, coherent states, compressed states, and Schro-
dinger cat states [23-27]. Studies of certain superpositions of Glauber (ordinary) coherent states 
have demonstrated sub-Poissonian statistics and quadrature squeezing [28]. Many researchers 
have developed techniques for superimposing coherent states in experiments [29-38]. Joshi 
and Obada [39] has explored the superposition of two binomial states as well as two negative 
binomial states. The generating strategy and properties of the superposition of displaced Fock 
states have been addressed [40]. On the other hand, research has been done on the superposition 
of two SDFS with various coherent parameters [41].

In previous studies, it was found that the JCM is a valid and attractive source for its 
more realistic applications in the field of information technology [42]. Most of the generaliza-
tions are based on the expansion of the number of photons transmitted or the multiplicity of 
modes of the electromagnetic field [43, 44]. Non-linear geometric connections based on the 
number of photons operator which are field distortion in several different modes are included 
in the atom field coupling [45]. The non-linear formulas of the functions based on the photons 
operator were linked to the group of SU(1,1) or SU(2), which revived the process of general-
izations with several advantages [46, 47]. The most important of which is the ease of obtaining 
the solution of the normalsize Schroedinger equation and the description of most of the previ-
ous models in a simple framework [48]. Also, a Kerr-like medium has been included in many 
models, because of its wide impact in measuring the amount of entanglement between quantum 
systems, whether they contain one or several atoms [43, 49]. The interactions between the atom 
and the field related to a single mode or several modes in the presence of stark shift have been 
studied [50]. The Stark shift has a direct impact on the amount of entanglement between the 
field and the atom [51].
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The dynamics of the system

In the current section, the system Hamiltonian which describes the interaction be-
tween the two-level atom and the cavity field with single-mode in the presence of Kerr-like 
medium. The dynamics is described via Schrodinger equation:

	
| = |di H
dt
ψ ψ〉

〉

where the Hamiltonian, H, of such a system takes the form:

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= ( | | | |),j jH A A g A A A A A Aχ + + + ++ +〉〈− + −〉〈+ (1)

where A^ + and A^ are creation and annihilation operators, respectively. The letter χ is the Kerr-like 
medium and g is the coupling constant.

The exact solution of the proposed system takes the form:

	
| = | , | 1,n nn

A n e B n gψ 〉 〉 + + 〉∑
where An and Bn are the amplitude of the probabilities of the excited and ground states, respec-
tively. By using the Schroedinger equation:

	
| = |i H
t
ψ ψ∂ 〉

〉
∂

we can obtain the system of differential equations:

| = ( ( 1) ) | ,
( ( 1) ( 1) ) | 1,

(( 1) | , ( 1) | 1, )

F n n

F n n

n n

H nA n n A n e
n B n n B n g

g n B n e n A n g

ψ ω χ
ω χ

〉 + − 〉 +

+ + + + + 〉 +

+ + 〉 + + + 〉
(2)

Now, equating coefficients in Schrodinger equation results:
d

= ( ( 1)) ( 1)
d

n
F n n

A
i n n n A g n B

t
ω χ+ − + + (3)

Also, we have:
d

= (( 1) ( 1)) ( 1)
d

n
F n n

B
i n n n B g n A

t
ω χ+ + + + + (4)

Setting

	 1 2= ( 1), = ( 1) ( 1) and = ( 1)F Fh n n n h n n n v g nω χ ω χ+ − + + + +

eqs. (3) and (4) become:

1
d =
d n ni h A vB
t

 − 
 

(5)

2
d =
d n ni h B vA

t
  − 
 

(6)

Together reduces to:
2

2
1 2 1 22

d d( ) = 0
dd ni h h h h v A
tt

 
− + + − 

 
(7)
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Similarly, for Bn we have:
2

2
1 2 1 22

d d( ) = 0
dd ni h h h h v B
tt

 
+ + − + 

 
(8)

Therefore, when ωF = 2χ and

 	
2 2= ( 1)g nµ χ + +

we have the solution:

( ) = (cos sin )n nA t q t ih tµ µ− (9)

where

	

1 2| |
2

2 2

| |= and =
!

i n

n
eh q e

ng

ααχ α

χ

−

+

Substituting in eq. (5) we obtain the solution for Bn:

( ) = sinn nB t ikq tµ− (10)

where

	
2 2

= gk
g χ+

The density matrix:

	

* *= ( ) | |F n m n m
n m
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So,
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Now, for 
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=0 =0
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Thus
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(| || |)| | = (cos sin )
!

n
in

n
n

A n e e t ih t
n

β α θ β αβ µ µ
∞− + −〈 〉 − =∑

	

( ) ( )
1 2 2| | | | ( 1) ( 1)2

=0

(| || |) 1=
! 2

n
in ir n t ir n t

n

e e e e
n

β α θ β α∞− + − + − +
× + −


∑



Almalki, F., et al.: Analytical Formula of the Wehrl Entropy and Wehrl Phase ... 
THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 1, pp. S425-S436	 S429

	
( )( 1) ( 1)

=0

(| || |) 1
! 2

n
in ir n t ir n t

n

ih e e e
n i

θ β α∞
− + − + 

− × − =


∑

	

( )2 21 ( ) ( )| | | |
2

=0 =0

1 (| || | ) (| || | )=
2 ! !

i rt n i rt n
irt irt

n n

e ee e e
n n

θ θβ α α β α β∞ ∞− − − +− + −
+ −


∑ ∑

	

( ) ( )( ) ( )

=0 =0

| || | | || |

! !

n ni rt i rt
irt irt

n n

e e
he he

n n

θ θα β α β− − − +∞ ∞
−


− + =



∑ ∑

	

( ) ( ) ( )( ) ( )1 2 2| | | |
2

=0 =0

| || | | || |1= ((1 ) (1 )
2 ! !

n ni rt i rt
irt irt

n n

e e
e h e h e

n n

θ θ
β α α β α β− − − +∞ ∞− + −


− + + =



∑ ∑

	

( )1 2 2| | | | ( ) ( )| || | | || |21= (1 ) (1 )
2

i rt i rtirt e irt ee h e e h e e
β α θ θα β α β− + − − − +− − + + 

 

Similarly, we have
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Therefore:
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Hence, the Husimi function reads:
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where 

	
2 2=r gχ + 	
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The phase distribution

The Wehrl phase distribution is given:

0

= ( ) ln ( ) | | d | |S Q Qθ β β β β
∞

−∫ (13)

So, for Husimi function (12) when t = 0 we have:

( )2 2| | | | 2| || |cos
2 2

0
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− − − − + =
π∫
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e e
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(14)

In this case, the Wehrl entropy is:
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Expressing the factor
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we can subsequently use the result:
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where β is the beta function. So, for j + k = r we get:
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Finally, the second order correlation function is used to detect the non-classical be-
havior of the field during the interaction with a two-level atom under the effect of Kerr medium 
and intensity dependent coupling. The second order correlation function can be expressed on 
terms of the two quantities ⟨A^+A^⟩, and ⟨A^+2A^2⟩ as [52]:

( )
2 2

2
2

ˆ ˆ
( ) =

ˆ ˆ

A A
G t

A A

+

+
(18)

Figure 1. The Wehrl entropy as function of time, where (a) χ = 0, f(n^) = I^, r = 0.001,  
(b) χ = 0, f(n^) = (n^ + 1)1/2, r = 0.001, (c) χ = 0, f(n^) = I^, r = 0.75, (d) χ = 0, f(n^) = (n^ + 1)1/2,  
r = 0.75, (e) χ = 0.75,  f(n^) = I^, r = 0.001, and (f) χ = 0.75,  f(n^) = (n^ + 1)1/2, r = 0.7

The effect of the Kerr medium, the dependence on the number of photons in the cou-
pling and the initial state of the field on the entanglement between the field and the atom are 
studied here. Figure 1(a) represents the Sw(t) relation in the absence of the effect of both the Kerr 
medium and the function of the dependence on the number of photons and the consideration 
of the coherent state approximately (χ = 0, f (n^) = I^, r = 0.001). The interaction begins with a 
weak entanglement, followed by an entanglement that gradually increases in strength with in-
creasing time. The coherence stabilizes after a period of time and the amplitude of oscillations 
decreases when the function Sw(t) reaches its maximum values. The situation is quite different 
when the dependence on the number of photons is taken into account f (n^) = (n^ + 1)1/2, as shown 
in fig. 1(b). An oscillating of entanglement function between maximum and minimum values 
is formed in a recursive manner. Therefore, adding a function of dependence on the number 
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of photons leads to a weak entanglement between the field and the atom. Fig.1c shows the 
activation of the role of the initial state of the field (χ = 0, f (n^) = I^, r = 0.75). The interaction 
begins almost from the state of separation, followed by the formation of the entanglement and 
gradually grows. The function Sw(t) needs a large period of time to reach the maximum val-
ues compared to the previous case. The entanglement improves significantly after taking into 
account the photon dependence function f (n^) = (n^ + 1)1/2. Moreover, the function Sw(t) reaches 
both minimum and maximum values repeatedly, as can be seen from fig.1(d). Figure 1(e) shows 
the effect of the Kerr medium on the entanglement between the field and the atom by setting  
(χ = 0.75, f (n^) = I^, r = 0.5). The inclusion of the Kerr medium into the interaction cavity leads 
to more weak entanglement, therefore, the function Sw(t) needs a large period of time to reach 
the maximum state. The position changes completely after activating the role of the photon 
dependence function. It is clear fig. 1(f) that a fluctuating entanglement between the minimum 
and maximum values is clearly generated. Moreover, activating the role of the function Sw(t) 
leads to more order and repetition of the function periodically. 

 
Figure 2. The Wehrl distribution as function of the angle θ and the time t, where  
(a) χ = 0,  f(n^) = I^, r = 0.01, (b) χ = 0, f(n^) = (n^ + 1)1/2, r = 0.001, (c) χ = 0, f(n^) = I^, r = 0.75,  
(d) χ = 0, f(n^) = (n^ + 1)1/2, r = 0.75

Here, the effect of Kerr-like medium, initial state, and the function of the photon op-
erator on Wehrl distribution are studied. The field is initially in the coherent state and the atom 
in the excited state, excluding the influence of a Kerr-like medium and the function of photon 
number operator (χ = 0, f (n^) = I^, r = 0.01). The distribution begins with a symmetrical peak 
about the θ = 0. With increasing time, the peak is divided into two branches in the direction 
of the sides, with a decrease in the maximum values. The peak reaches its highest value at  
θ = ±π/2. Continuously increasing the time, the peak begins to return again, in the opposite 
direction, with a decrease in the maximum values. Finally, the two peaks meet at θ = ±π. Thus, 
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the previous shape is repeated with increasing time and produces similar shapes as shown in 
fig. 2(a). Figure 2(b) shows the effect of the squeezed state, an isomorph is generated with the 
previous case with a decrease in the maximum values of the Wehrl distribution. It is known that 
the Wehrl distribution is a probability distribution, that is, the area under the Wehrl curve is con-
stant. Therefore, when the extreme values decrease, the thickness of the distribution increases, 
as is clear from the shape of the distribution. When the Kerr-like medium is taken into account, 
this is illustrated by fig. 2(c). The extreme values decrease on one side of the distribution while 
they increase on the other side. This is due to the constancy of the area under a Wehrl distribut-
ed curve, so it increases in one area and decreases in the other. The maximum values decrease 
and the thickness of the Wehrl distribution increases after considering the squeezed state, as 
shown in fig. 2(d). From the results, it is clear that Kerr medium breaks the symmetry of Wehrl 
distribution around the θ = 0-axis. While considering the squeezed state reduces the maximum 
values and increases the thickness of the distribution. 

 
Figure 3. The correlation function as function of time, where (a) χ = 0, f(n^) = I^, r = 0.001, (b) χ = 0,  
f(n^) = (n^ + 1)1/2, r = 0.001, (c) χ = 0, f(n^) = I^, r = 0.75, (d) χ = 0, f(n^) = (n^ + 1)1/2, r = 0.75, (e) χ = 0.75,  
 f(n^) = (I^)1/2, r = 0.001, and (f) χ = 0.75, f(n^) = (n^ + 1)1/2, r = 0.7

Correlation behavior between photons through the correlation function is studied here, 
under the same aforementioned conditions in entanglement. Figure 3(a) shows the correlation 
behavior of photons in the coherent state after excluding both the non-linear function and the 
Kerr-like medium (χ = 0, f (n^) = I^, r = 0.01). The distribution fluctuates between classical and 
non-classical behavior, passing through the Poisson distribution frequently. The distribution 
tends to be non-classical most of the time after the inclusion of the function f (n^) = (n^ + 1)1/2 of 
the interaction cavity as shown in the fig. 3(b). The classical distribution improves when the 



Almalki, F., et al.: Analytical Formula of the Wehrl Entropy and Wehrl Phase ... 
S434	 THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 1, pp. S425-S436

squeezed state is considered, as shown in fig. 3(c). The correlation function appears more reg-
ular than the coherent case. The correlation function reaches the non-classical distribution at 
short intervals compared to the periods of the classical distribution. The correlation function ap-
pears irregularly and the non-classical distribution disappears completely after the inclusion of 
the non-linear function dependent on the number of photons operator into the interaction cavity 
as shown in fig. 3(d). Figure 3(e) illustrates the activation of the Kerr-like medium, showing the 
classical distribution more clearly than the squeezed state, and completely erasing the non-clas-
sical distribution when the Kerr-like medium is included for the interaction cavity. The case of 
the classical distribution increases further after taking the function of the photon operator into 
account, and the randomness of the distribution increases as seen in fig. 3(f).

Conclusion

In the previous sections, a model was proposed that contains a two-level atom that 
interacts with a single-mode field, taking into account a function that depends on the number 
of photons operator in the atom-field coupling. The wave function of this model was calculated 
under the condition of a relation between the Kerr-like medium and the field-atom coupling 
parameters. The effect of the initial state, the function dependent on the number of photons 
operator, and the Kerr-like medium on the entanglement between the parts of the proposed 
system, the Wehrl distribution, and the behaviour of correlation function were studied. Strong 
entanglement is generated when the effect of the photon-dependent function is neglected, and 
the entanglement increases with increasing time. While weak entanglement is generated in the 
case of considering the function that depends on the number of photons, it reaches at some 
times to the state of purity (the state of separation between the parts of the system). While the 
entanglement improves significantly when considering the squeezed state and decreases when 
considering the Kerr-like medium. It is clear that Kerr medium breaks the symmetry of Wehrl 
distribution around the θ = 0-axis. While considering the squeezed state reduces the maximum 
values and increases the thickness of the distribution. The correlation function has both clas-
sical and non-classical behavior in the coherent state. Adding a function that depends on the 
number of photons reduces the non-classical distribution. Setting the field in the squeezed state 
generates a classical distribution. Adding a Kerr-like mean erases the non-classical distribution 
completely and the correlation function appears randomly.
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