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In this article, we adopted the classical and Bayesian approach to develop the prob-
lem of estimation and prediction of the inverse Lomax distribution under Type-I 
hybrid censored scheme. Firstly, we presented maximum likelihood estimators and 
Bayes estimators of the unknown parameters under consideration of squared error 
loss equation. In Bayesian approach, we used Markov chain Monte-Carlo method 
by applied importance sampling technique. Asymptotic confidence intervals and 
Bayes credible intervals are constructed. The estimators are tested by building sim-
ulation study. Secondly, For given Type-I hybrid censoring sample Bayesian predic-
tion of future order statistics are formulated (two-sample case). Finally, the numeri-
cal computations are adopted on a real data set for illustrating purpose. 
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Introduction

The reliability analysis is usually concerned with failures in the time domain which 
show the difference between the quality control and reliability engineering. In the literature 
of statistics, censoring was described as a condition in which the value of observation is only 
partially known. Different types of censoring schemes are available and the simplistic ones 
called by Type-I censoring and Type-II censoring schemes (CS). The two Type of CS can be 
used to saving time and money. The Type-I CS (time scheme) has fixed test time but, number 
of failures is random. The Type-II CS (numbered scheme) has a fixed number of failures but, 
the test time is random. The generalized form of Type-II CS is difened by Type-II progressive 
censoring scheme, Johnson [1]. For the cost and time lamination the experimenter may be need 
to run the experiment under joint case of Type-I and Type-II CS which is known by hybrid 
censoring scheme (HCS). The simplistic HCS in statistic are called by Type-I HCS and Type-II 
HCS. In both type of HCS, we propose the test time by τ and number of failure by m and the test 
terminated at min(τ, Tm) in Type-I HCS and terminated at max(τ, Tm) in Type-II HCS. Different 
authors discussed HCS, Gupta and Kundu [2], Kundu and Pradhan [3] Algarni et al. [4] and 
Tahani et al. [5]. In this article, we are adopted the Type-I HCS and hence, let a sample of size 
n is random selected from a population has probability density equation (PDF) given by f(t) 
and cumulative density equation (CDF) given by F(t). Under Type-I HCS, suppose T_ = {Ti;m,n},  
i = 1, 2,..., r be identical independent random sample of size r where:
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Also, the test terminated time η = (τ, Tm). Therfore, the joint likelihood equation of 
Type-I HCS, T_ = {Ti;m,n}, i = 1, 2,..., r is given:
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where S(.) = 1 – F(.) is the survival equation.
The inverse Lomax (IL) distribution has different applications in medical fields, eco-

nomics, geography and actuarial, Kleiber and Kotz [6]. The IL distribution was applieded in 
modelling stochastic of decreasing failure rate equation of life components, Kleiber and Kotz 
[6]. For the relationship bettween ordered statistics, Kleiber [7] and the the problem of analyzed 
order statistics generated from the mixture of two IL distributions, Rahman and Aslam [8]. 
The estimator of reliability equation of IL distribution was developed under Type-II censoring 
scheme, Singh et al. [9]. Bayes estimators was introduced of two-components mixture of IL 
distributions by Rahman and Aslam [10]. For the E-Bayesian approach descussed recently by 
Reyad and Othman [11] under Type-I censoring scheme. Also, Bayes estimate of the parameter 
of stress-strength reliability by Sing et al. [12].

In this article, we estimate the unknown parameters of IL distribution by two methods 
of estimation, MLE and Bayes estimation. Also, the reliability of the system and the corre-
sponding system failure rate for given time values are formulated. The problem of comparison 
between two methods of estimation are constructed through Monte-Carlo simulation study and 
the resultts are measured under mean squared error (MSE) for point estimators and coverage 
percentage (CP), and mean interval length (MIL) for interval estimators. Another important 
problem in life-testing experiments namely the prediction of unknown observables belonging 
to a future sample. In this paper we consider the prediction problem in terms of the estimation 
of the posterior predictive density of a future observation for two-sample schemes. Therefore, 
for given Type-I HCS sample, we predictive interval for a future observation using Gibbs sam-
pling procedure. The developed results are discussed through a set of real data.

The model and likelihood equation

The random variable T is called IL random variable if and only if has the CDF given:

( ) = 1F t
t

βα −
 + 
 

(3)

where α, β, are the scale and shape parameters, respectively. Also, if the random variable has 
IL distribution then, the value 1/t is distributed by Lomax distribution. The corresponding PDF, 
and the survival equation S(t) and hazrad failure rate equation H(t) of IL distribution, respec-
tively are given:
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Suppose that, n independent units put under life testing experiment and the 
two values (τ, m) are prior proposed to present the test time and number of failures units. 
The observed failure time is record until the min(τ, tm) is observed to present t_ = {Ti;m,n},  
i = 1, 2,..., r where r is defined by (1). The joint likelihood equation given by eq. (2) under ob-
served Type-I HCS sample t_ = {Ti;m,n} and IL distribution eqs. (3)-(6) is reduced:
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The corresponding log-likelihood equation is given:
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Maximum likelihood estimation

Point maximum likelihood estimators

Parameters estimation under ML method need to calculate the absolutely maximum 
values of likelihood eq. (7) and hence, the maximum values of Log-likelihood eq. (8), Abd-El-
mougod et al. [13]. Therefore, we compute the first partial derivatives of eq. (8) with respect to 
α and β and equating each to zero:
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Hence, The ML estimate of the parameters α and β say, α^ and β^ are obtained by solve 
the two non-linear eqs. (9) and (10) with any iteration method such as Newton Raphson. The 
corresponding estimate of the system relability and system hazard failure rate equation for 
given time t is given:
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Asymptotic confidence intervals

The Fisher information matrix in statistical literature is defined as the expectation 
of the minus second partially derivatives of the log-likelihood equation. Therefore, under the 
last definition suppose, the Fisher information matrix of the model parameters is denoted by 
FIM(Θ) where Θ = {α, β}:
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The expectation of second partially derivative in several cases more serous to obtain 
therefore, we replace the Fisher information matrix by approximate information matrix which 
is denoted by FIM0(Θ), where:
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Also, the second partially derivative with respected to the model parameters are given:
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Under the normality property of the ML estimators with mean Θ = {α, β} and variance 
obtained from the diagonal of variance-covariance matrix FIM0

–1(Θ), where FIM0
–1(Θ) is denot-

ed to the inverse of approximate information matrix at ML estimate of the model parameters. 
The approximate interval estimators with (1 – γ)100% confidence level of the model parameters  
Θ = {α, β} is given:

/2 1 /2 2
ˆˆ andz e z eγ γα β  (18)

where the values e1 and e2 present the diagonal of approximate variance-covariance matrix 
FIM0

–1(Θ) with percentile standard normal tabulated value x/2 at γ confidence level.

Bayesian approach

In Bayesian approach, information come from two sources, Тype-I HCS sample t _ 
which is described by the likelihood equation L(Θ| t _) and prior information about the unknown 
parameters which described by prior distribution. Under consideration that, the prior informa-
tion presented as independent gamma distributions which is given:

1 exp{ }, , > 0, > 0a b a bα α α α−∝ − (19)

and 
1 exp{ }, , > 0, > 0c d c dβ β β β−∝ − (20)

The joint prior distribution is given:

1 1( , ) exp{ }a c b dα β α β α β∗ − −π ∝ − − (21)

Then, we formulate the joint posterior density equation of Θ = {α, β} under consider-
ation prior density eq. (15) and the likelihood eq. (7):
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Hence, the Bayes estimators of any equation of the parameters Ψ{α, β} respected SEL 
equation is given:
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The Bayes estimator (23) need to compute the ratio of two integrals which in general 
more complicated specially, in a high dimensional cases. Therefore, we search for the alterna-
tive methods other than the analytical solution. Different approximated methods can be used, 
such as numerical integration, Lendly approximations and MCMC method, Algarni et al. [14]. 
In this section, we adopted the MCMC methods as follows.

The joint posterior density eq. (22) can be written:

1 2( , ) ( | ) ( | , ) ( , )K t K t hα β α β α α βπ ∝ (24)
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where K1(α| t _) is proper equation of α and its plot is similar to normal distribution is given:
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The  K2(β| t _) is a gamma density equation with the shape and scale parameters as and:
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As given by Chen and Shao [15], Gibbs sampling is used to draw the MCMC sam-
ples under importance sampling technique. Also the corresponding HPD credible intervals are 
constructed. Therefore, Gibbs sampling under importance sampling technique is described as 
algorithms:
–– Begin with initial values α(0) = α^  and κ = 1. 
–– The value β(κ) is generated from gamma distribution K2[β|α(κ –1), t_].
–– The value α(κ) is generated from eq. (25) under MH algorithms with normal proposal distri-

bution with mean α(κ –1) and variance e1, where e1 is computed from approximate information 
matrix.

–– Compute h(κ) = h(α(κ), β(κ)) and put κ = κ = κ + 1. 
–– Repeat 2 and 4 N times.
–– The Bayes point estimate of Ψ(α, β) under a SEL is given:
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and the posterior variance of Ψ(α, β) is given:
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where M is the first number of iteration need to reach to stationary distribution of posterior dis-
tribution. Also, Ψ(α, β) is any equation of the parameter may be α, β reliability equation, hazard 
rate equation or others.
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–– The HPD credible intervals of Ψ(α, β) is computed with the help of the idea of Chen and 
Shao [15] as the following algorthms: 

Step 1.Calculate Ψ(i) = Ψ(α (i), β (i)), i = M + 1, 2,..., N.
Step 2. Put  Ψ(i), i = M + 1, 2,..., N in asdeing order to be Ψ(i), i = 1, 2,..., N – M. 
Step 3. Calculate the weighted equation w(i) :
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Put w(i), i = M + 1, 2,..., N in asdeing order to be w(i), i = 1, 2,..., N – M. Hence, for each 
value Ψ(i) corresponding value of w(i).

Step 4. The marginal posterior of Ψ can be estimated for γ the quantile:
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Step 5. The (1 – γ%)100 credible intervals of Ψ:

( )( / ) ({ [(1 ) ]}/ ),L N L N Nα+ −Ψ Ψ (31)

where L = 1, 2,..., N – [(1 – γ)N].
	 Step 6. The 100(1 – γα%) HPD interval of  Ψ is the one, with the smallest interval width 
among all credible intervals. 

Monte-Carlo simulations

The estimators obtained under ML and Bayes methods are compared and assessed 
with Monte-Carlo simulation study. In our studying, we used two set of the parameter val-
ues as (α, β) = {(0.5, 1.5), (2, 1.2)}. For Type-I HCS, we used different combination of (n, m, 
τ). The prior information are selected to be non-informative prior information P0 (mean that  
a = b = c = d = 0.0001) and informative prior information P1 (mean that, a, b, c, d are 
selected to satisfy the true parameter –  ~ prior shape/prior scale). Through the simulation 
problem, we generate 1000 different samples from IL distribution. For each sample, we com-
pute MLE and the corresponding Bayes estimate under P0 and P1. Therefore, for the numerical 
result compute MSE and the result reported in tabs. 1 and 3. Also, for interval estimate coverage 
percentage (CP) and interval length are reported in tabs. 2 and 4.

It is clear from tabs. 1-4 some point reported:
–– The proposed informative Bayes estimate perform very well for all choices of the parameter 

value and censoring scheme
–– The results in non-informative Bayes estimate are closed to MLE.
–– The value of MSE are decreasing as the proportion (m/n) is increasing.
–– The value of MIL are decreasing and CP reduced to the confidence level as the proportion 

(m/n) is increasing.
–– The results are more better for large value of τ than smaller values. 
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Table 1. The MSE of the different estimators when (α, β) = (0.5, 1.5)
(τ, n, m)  MLE  Bayes  (P0)  Bayes (P1) 

 α  β  α  β  α  β
 (0.1, 25, 15)  0.1254  0.5244  0.1214  0.5100  0.1014  0.3523 
 (0.1, 25, 20)  0.1211  0.4392  0.1187  0.4255  0.0989  0.2987 
 (0.1, 40, 20)  0.1201  0.4383  0.1175  0.4242  0.0969  0.2970 
 (0.1, 40, 30)  0.1150  0.4320  0.1122  0.4194  0.0912  0.2911 
 (0.1, 60, 40)  0.1138  0.4308  0.1109  0.4181  0.0900  0.2895 
 (0.1, 60, 50)  0.1138  0.4308  0.1109  0.4181  0.0900  0.2895 
 (0.5, 25, 15)  0.1130  0.4295  0.1100  0.4010  0.0921  0.2400 
 (0.5, 25, 20)  0.1076  0.4281  0.1065  0.4132  0.0862  0.2851 
 (0.5, 40, 20)  0.1077  0.4269  0.1051  0.4110  0.0841  0.2851 
 (0.5, 40, 30)  0.1018  0.4199  0.1001  0.4078  0.0800  0.2801 
 (0.5, 60, 40)  0.1115  0.4195  0.1002  0.4114  0.0782  0.2761 
 (0.5, 60, 50)  0.1014  0.4181  0.1000  0.4051  0.0788  0.2775 
 (2.0, 25, 15)  0.0832  0.3819  0.0811  0.3600  0.0670  0.2810 
 (2.0, 25, 20)  0.0780  0.3810  0.0800  0.3569  0.0655  0.2772 
 (2.0, 40, 20)  0.0771  0.3790  0.0775  0.3545  0.0635  0.2741 
 (2.0, 40, 30)  0.0715  0.3779  0.0749  0.3525  0.0618  0.2722 
 (2.0, 60, 40)  0.0701  0.3762  0.0728  0.3501  0.0601  0.2718 
 (2.0, 60, 50)  0.0699  0.3732  0.0702  0.3481  0.0582  0.2701 

 Table 2. The MIL(CP) of the different estimators when (α, β) = (0.5, 1.5)
(τ, n, m)  MLE  Bayes (P0)  Bayes (P1 ) 

 α  β  α  β  α  β
 (0.1, 25, 15)  1.541(88)  3.889(89)  1.530(89)  3.878(89)  1.410(91)  3.655(90) 
 (0.1, 25, 20)  1.511(89)  3.858(90)  1.507(90)  3.858(91)  1.392(90)  3.632(90) 
 (0.1, 40, 20)  1.501(89)  3.845(89)  1.495(92)  3.841(93)  1.379(91)  3.611(93) 
 (0.1, 40, 30)  1.472(90)  3.817(90)  1.481(91)  3.828(92)  1.365(94)  3.600(93) 
 (0.1, 60, 40)  1.461(91)  3.800(92)  1.466(92)  3.814(91)  1.351(92)  3.585(92) 
 (0.1, 60, 50)  1.445(91)  3.469(91)  1.456(91)  3.801(93)  1.135(93)  3.571(92) 
 (0.5, 25, 15)  1.335(89)  3.450(90)  1.325(90)  3.431(90)  1.117(96)  3.351(94) 
 (0.5, 25, 20)  1.300(91)  3.435(92)  1.311(93)  3.415(94)  1.104(93)  3.324(93) 
 (0.5, 40, 20)  1.289(92)  3.419(91)  1.300(96)  3.401(93)  1.091(91)  3.311(93) 
 (0.5, 40, 30)  1.271(90)  3.401(93)  1.287(93)  3.391(92)  1.076(95)  3.300(92) 
 (0.5, 60, 40)  1.264(93)  3.382(94)  1.271(92)  3.379(95)  1.061(95)  3.284(92) 
 (0.5, 60, 50)  1.238(94)  3.788(93)  1.254(94)  3.361(96)  1.045(93)  3.271(95) 
 (2.0, 25, 15)  1.220(90)  3.241(90)  1.127(93)  3.214(91)  1.015(91)  3.148(90) 
 (2.0, 25, 20)  1.211(93)  3.222(94)  1.114(93)  3.200(94)  1.001(93)  3.128(93) 
 (2.0, 40, 20)  1.187(92)  3.201(91)  1.107(94)  3.187(92)  0.987(93)  3.114(94) 
 (2.0, 40, 30)  1.169(90)  3.182(92)  1.095(93)  3.171(92)  0.971(94)  3.101(92) 
 (2.0, 60, 40)  1.151(92)  3.179(94)  1.087(92)  3.165(94)  0.961(95)  3.089(95) 
 (2.0, 60, 50)  1.143(91)  3.151(95)  1.069(95)  3.144(96)  0.952(91)  3.073(94) 
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Table 3. The MSE of the different estimators when (α, β) = (2.0, 1.2)
(τ, n, m)  MLE  Bayes (P0)  Bayes (P1) 

 α  β  α  β  α  β
 (0.5, 25, 15)  0.6451  0.3421  0.6432  0.3407  0.4436  0.2356 
 (0.5, 25, 20)  0.6402  0.3390  0.6381  0.3374  0.4400  0.2321 
 (0.5, 40, 20)  0.6390  0.3369  0.6374  0.3356  0.4387  0.2304 
 (0.5, 40, 30)  0.6344  0.3335  0.6339  0.3319  0.4351  0.2274 
 (0.5, 60, 40)  0.6312  0.3313  0.6304  0.3294  0.4311  0.2228 
 (0.5, 60, 50)  0.6281  0.3288  0.6271  0.3269  0.4281  0.2201 
 (2.0, 25, 15)  0.5654  0.2451  0.5641  0.2427  0.2370  0.1784 
 (2.0, 25, 20)  0.5619  0.2422  0.5612  0.2401  0.2339  0.1745 
 (2.0, 40, 20)  0.5591  0.2392  0.5584  0.2375  0.2302  0.1714 
 (2.0, 40, 30)  0.5564  0.2369  0.5554  0.2352  0.2274  0.1681 
 (2.0, 60, 40)  0.5531  0.2325  0.5522  0.2314  0.2236  0.1641 
 (2.0, 60, 50)  0.5502  0.2300  0.5491  0.2284  0.2203  0.1611 
 (4.0, 25, 15)  0.5002  0.1800  0.4952  0.1745  0.1854  0.1124 
 (4.0, 25, 20)  0.4965  0.1762  0.4925  0.1732  0.1818  0.1103 
 (4.0, 40, 20)  0.4938  0.1741  0.4914  0.1709  0.1800  0.1087 
 (4.0, 40, 30)  0.4911  0.1718  0.4901  0.1692  0.1750  0.1045 
 (4.0, 60, 40)  0.4871  0.1700  0.4862  0.1671  0.1718  0.1024 
 (4.0, 60, 50)  0.4847  0.1674  0.4824  0.1655  0.1700  0.1003 

Table 4. The MIL(CP) of the different estimators when (α, β) = (2.0, 1.2) 
(τ, n, m)  MLE  Bayes (P0)  Bayes (P1) 

 α  β  α  β  α  β
 (0.5, 25, 15)  4.234(89)  2.542(88)  4.218(89)  2.528(90)  4.002(90)  3.403(90) 
 (0.5, 25, 20)  4.202(89)  2.515(90)  4.197(89)  2.501(91)  3.974(91)  3.361(92) 
 (0.5, 40, 20)  4.171(90)  2.487(91)  4.165(90)  2.472(91)  3.941(92)  3.325(93) 
 (0.5, 40, 30)  4.141(91)  2.452(93)  4.134(90)  2.441(93)  3.905(92)  3.300(92) 
 (0.5, 60, 40)  4.115(93)  2.427(91)  4.107(92)  2.418(93)  3.882(95)  3.269(96) 
 (0.5, 60, 50)  4.082(90)  2.401(91)  4.074(92)  2.389(92)  3.854(95)  3.241(95) 
 (2.0, 25, 15)  3.842(92)  2.245(94)  3.815(91)  2.219(92)  3.548(93)  3.024(94) 
 (2.0, 25, 20)  3.817(92)  2.218(94)  3.803(96)  2.198(96)  3.514(93)  3.000(92) 
 (2.0, 40, 20)  3.792(93)  2.189(92)  3.777(96)  2.168(94)  3.482(93)  2.969(93) 
 (2.0, 40, 30)  3.758(94)  2.147(94)  3.742(93)  2.139(90)  3.448(96)  2.931(95) 
 (2.0, 60, 40)  3.719(93)  2.112(91)  3.708(93)  2.101(96)  3.414(92)  2.911(94) 
 (2.0, 60, 50)  3.692(92)  2.079(94)  3.681(92)  2.059(93)  3.387(94)  2.875(93) 
 (4.0, 25, 15)  3.470(93)  1.874(91)  3.452(92)  1.850(91)  3.147(92)  2.663(94) 
 (4.0, 25, 20)  3.445(92)  1.852(92)  3.438(93)  1.844(93)  3.113(96)  2.624(94) 
 (4.0, 40, 20)  3.414(91)  1.822(93)  3.403(94)  1.812(92)  3.084(94)  2.582(92) 
 (4.0, 40, 30)  3.380(93)  1.800(94)  3.364(95)  1.795(96)  3.055(92)  2.547(96) 
 (4.0, 60, 40)  3.342(92)  1.769(93)  3.331(92)  1.744(94)  3.014(93)  2.517(93) 
 (4.0, 60, 50)  3.315(96)  1.727(93)  3.302(94)  1.714(93)  2.970(94)  2.480(95) 
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Bayes predicted interval of a future order statistics (two-sample case)

For given Type-I HCS T_  = {Ti;m,n}, i = 1, 2,..., r suppose that, the future order statistics 
(Y1, Y2,..., Ys) of size s which is independent of the informative sample. The predictive density 
equation of the future order statisti Y(J), given the informative sample T_  can be written:

1( ) = [ ( )] [1 ( )] ( )J S J
J

s
g y J F y F y f y

J
− − 

− 
 

(32)

Which is reduced:

1

=0

( ) = ( 1) [ ( )] ( )
S J

i J i
J

i

s S J
g y J F y f y

J i

−
+ −−   

−   
   
∑ (33)

By using eqs. (3) and (4) in eq. (33), we obtain:

( ) ( )
=0

( 1)
( ) = , ,

i
S J

J
i

S J
r i

g y s f y J i
s J i

α β
−

− 
−      +    + 

∑ (34)

and the corresponding CDF is defined by GJ (y) where:

( ) ( )
=0

( 1)
( ) = , ,

i
S J

J
i

S J
r i

G y s F y J i
s J i

α β
−

− 
−      +    + 

∑ (35)

where f(y) and F(y) given by eqs. (3) and (4). Therefore, the predictive density of Y(J) is given:

0 0

( ) = ( ) ( , )d dJ Jg y g y α β α β
∞ ∞

∗ π∫ ∫ (36)

and predictive distribution of Y (J) is given:

0 0

( ) = ( ) ( , )d dJ JG y G y α β α β
∞ ∞

∗ π∫ ∫ (37)

where π(α, β) is the joint posterior density of α and β given by eq. (22). The explicit solutions 
of eqs. (36) and (37) does not available to determine the prediction bounds of Y(J) then, we used 
MCMC samples {(αi, βi), i = M + 1, M + 2,..., N}, a simulation consistent estimators of g*

J (y) 
and G*

J (y), can be obtained:

( )( ) ( )

= 1

ˆ ( ) = , ,
N

i i
J J i

i M

g y g y wα β∗

+
∑ (38)

and

( )( ) ( )

= 1

ˆ ( ) = , ,
N

i i
J J i

i M

G y G y wα β∗

+
∑ (39)

Hence, the two estimators g^ * J (y) and G^ *
J (y) can be computed for each sample  

{(αi, βi), i = M + 1, M + 2,..., N}. Moreover, The Bayesian predictive bounds of a two-sided 
equated (1 – γ)100% interval for Y(J) can be obtained by solving the following two equations for 
lower bound, L and upper bound, U:

	
( )( )

ˆ> | = 1 ( ) = 1
2J JP Y L t G L γ∗− −
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hence
ˆ ( ) =

2JG L γ∗ (40)

and

	 ( )( )
ˆ> | = 1 ( ) =

2J JP Y U t G U γ∗−

hence
ˆ ( ) = 1

2JG U α∗ − (41)

The eqs. (40) and (41) does not solve analytically but, the numerical technique can be 
used to solve these non-linear equations such as Newton Raphson.

Data analysis

In this section, we are adopted the real data set which has presented the remission 
times of a 116 bladder cancer patients, Lee and Wang [16]. For n = 16, m = 50, and τ = 5 the 
generated Type-I HC sample given by {0.08, 0.2, 0.4, 0.5, 0.51, 0.81, 0.9, 1.05, 1.19, 1.26, 1.35, 
1.4, 1.46, 1.76, 2.02, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 
3.25, 3.31, 3.48, 3.52, 3.57, 3.64, 3.7, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.4, 4.5, 4.51, 
4.87, 4.98}. From the real Type-I HC data the value of r = 47 and η = τ. For Bayesian approach, 
we adopted the non-informative information a = b = c = d = 0.0001. Also, MCMC approach 
run with 11000 chan terminated the first 1000 chan as burn-in. The simulated number generated 
from posterior distribution described by figs. 1-4 the results of the point estimate of ML and 
Bayes approach are reported in tab. 6. The results of interval estimate are reported in tab. 7. 
Also, the result of future order statistic and the corresponding predictive intervals are reported 
in tab. 8. Since the prediction of the future order statistic that is far a way from the last observed 
value has less accuracy than that of other future order statistics.

Table 5. The real data set represents the remission times of a 116 bladder cancer patients
0.08  2.09  3.48  4.87  6.94  8.66  13.11  23.63  0.20  2.23  3.52  4.98 
6.97  9.02  13.29  0.40  2.26  3.57  5.06  7.09  9.22  13.80 25.74  0.50 
2.46  3.64  5.09  7.26  9.47  14.24  25.82  0.51  2.54  3.70 5.17  7.28 
9.74  14.76  26.31  0.81  2.62  3.82  5.32  7.32  10.06  14.77 32.15  2.64 
3.88  5.32  7.39  10.34  14.83  34.26  0.90  2.69  4.18  5.34 7.59  10.66 
15.96  36.66  1.05  2.69  4.23  5.41  7.62  10.75  16.62  43.01 1.19  2.75 
4.26  5.41  7.63  17.12  46.12  1.26  2.83  4.33  5.49  7.66 11.25  17.14 
79.05  1.35  2.87  5.62  7.87  11.64  17.36  1.40  3.02  4.34 5.71  7.93 
11.79  18.10  1.46  4.40  5.85  8.26  11.98  19.13  1.76  3.25 4.50  6.25 
8.37  12.02  2.02  3.31  4.51  6.54  8.53  12.0 

Table 6. Point MLE and Bayes estimate of  
parameters, reliability and hazard failure rate

 λ   β   S(1.0) H(1.0)
MLE  3.82795  1.69025  0.930133  0.100666 
Bayes  2.1296  1.9788  0.891766  0.161085 

Table 7. The 95% interval MLE  
and Bayes estimate of parameters

 λ   β  
MLE  (0.7452, 5.2456 )  (0.7872, 3.5547 ) 
Bayes  (0.3654, 3.6958 )  (0.4215, 2.3245 ) 
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Figure 1. Simulation number of generated 
by important sample method of α

Figure 2. The histogram of the number 
generated by important sample method of α

        
Figure 3. Simulation number of generated 
by important sample method of  β 

Figure 4. The histogram of the number 
generated by important sample method of β

Table 8. The 95% Bayesian prediction  
intervals of a future order statistic

Y(s)  L  U
Y(1)  0.0013  0.1124
Y(2)  0.0155  0.4521
Y(3)  0.1472  0.8217
Y(4)   0.1777  0.8541
Y(5)  0.2004  1.0026
Y(6)  0.2874  1.3229
Y(7)  0.3325  1.4219

Conclusion

In this paper, the problems of statistical inference and prediction of inverse Lomax 
distribution is discussed under Type-I HCS . This sampling plan is quite useful to practitioners, 
because they provide savings in resources and in total test time. Estimations under ML methods 
are computed with the help of Newton Raphson iteration and interval estimations are computed 
under the normality properties of ML estimators. The prior information of the model parameters 
in Baysian approach is represented by the independent gamma priors. The appropriate squared 
error loss equation is used. The Bayes estimation are computed with the help of MCMC meth-
ods. The same MCMC samples are used for two sample prediction problems. The details have 
been explained using a real life example. Also, the results from simulation studies illustrate that 
the performance of our proposed method is acceptable.
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