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The inverse Lomax distribution has been extensively used in many disciplines, in-
cluding stochastic modelling, economics, actuarial sciences, and life testing. It
is among the most recognizable lifetime models. The purpose of this research is
to look into a new and important aspect of the inverse Lomax distribution: the
calculation of the fuzzy stress-strength reliability parameter Rr = P(Y < X), as-
suming X and Y are random independent variables that follow the inverse Lomax
probability distribution. The properties of structural for the proposed reliability
model are studied along with the Bayesian estimation methods, maximum product
of the spacing and maximum likelihood. Extensive simulation studies are achieved
to explore the performance of the various estimates. Subsequently, two sets of real
data are considered to highlight the practicability of the model.

Key words: inverse Lomax distribution, fuzzy reliability, real data,
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Introduction

In medical, industrial, reliability and technical implementations, special-forces units
or systems may be exposed to arbitrary ecological stresses including moisture, pressure, and
temperature. In these disciplines, the stress-strength-based dependability model is significant.
In fact, the survival of the system depends on the strength and efficiency of its applications. In
the last century, in the WW2, a number of technologies were discovered. It is including sensors
and communications systems, were unsuccessful when used in settings other than those for
which they were intended. For that purpose, scientists have begun to evaluate the reliability of
equipment while looking at the influence of environmental conditions. System reliability is the
chance that the system is robust enough to overcome stress. A receiver operating characteristic
(ROC) region for diagnostic testing can be explained in the same way as traditional reliability,
Bamber [1].
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Research on the traditional model of reliability for stress-strength on the evaluation,
calculation, and estimation of the reliability of different stress and strength probabilities is nu-
merous. Coolen and Newby [2] provided a thorough examination of the classical reliability
of the stress-strength system. Raqab et al. [3], the classic stress-strength reliability parameter
(SSRP) was calculated by considering the generalised three-parameter exponential distribution.
Similarly, the estimate of the SSRP for generalised Pareto distribution was described by [4].
Although the El-Sagheer et al. [5] discussed the inferences for the SSRP when its strength vari-
able is subjected to a partially accelerated life test. The analyze of the SSRP for the generalised
logistic distribution has been investigated by Asgharzadeh et al. [6]. Akgul and Senogglu [7],
the Lindley distribution was considered, and an estimation work was performed. Al-Omary et
al. [8] discussed the SSRP estimate when the random variables follow the Pareto distribution,
and are independently exponentiated when selected samples using certain classification sample
designs. With the maximum product of the spacing (MPS) estimation approach, Lu et al. [9]
determined the traditional SSRP. Also, Mohamed et al. [10] introduced an application of type II
half logistic Weibull model inference of the reliability analysis for bladder cancer data.

On the other hand, Huang [11] looked at fuzzy reliability estimates in which the ran-
dom data, say X and Y, are not identically distributed but are independent in the distribution.
It is explained that the goal of fuzzy reliability is to enable researchers to conduct delicate and
precise assessments of the underlying systems of life reliability. If the difference X — Y is larger,
the system is more stable and reliable. Character and randomness in reliability engineering are
features of the fuzzy reliability model for stress-strength on the classical reliability system.
More lately, Bayesian reliability for fuzzy lifetime data has been introduced and discussed
in Huang et al. [12]. Wu [13] offered a Bayesian technique for fuzzy reliability estimation.
Moreover, Wu [14] discussed the evaluation of the reliability of fuzzy Bayesian systems using
the exponential distribution. Recent, inferential works on fuzzy reliability include those of [6],
Buckley [15] and Chem and Pham [16]. In addition, the bootstrap confidence intervals (CI) for
reliability functions has been evaluated and analyzed in Lee ez al. [17].

The characteristics of the developed non-parametric estimation of the reliability func-
tion that are used in many reliability problems are studied in Zardasht et al. [18]. Neamah et al.
[19] developed a fuzzy reliability estimate through the Frechet probability using a simulation
method. Sabry ef al. [20] presented a fuzzy approach to the reliability system for the inverse
Rayleigh distribution.

In the same as the preceding references, this paper contributes to the inference of the
fuzzy SSRP defined by Rr = P(Y < X), where X and Y represent random independent variables
with the inverse Lomax (IL) distribution. We recall that the IL distribution has been extensively
used in many disciplines, including stochastic modelling, economics, actuarial sciences, and
life testing. It is among the most recognizable lifetime models, but the estimation of Ry in this
setting remain unexplored, and motivates this study. To this aim, the product of the spacing ap-
proach is utilised in conjunction with a number of other strategies to estimate the dependability
of the fuzzy stress strength. The MPS estimation technique and asymptotic and bootstrap CI
for maximum likelihood (ML) estimation technique are obtained. As an alternative, the highest
posterior density credible intervals for the Bayesian estimates (BE) are displayed. The effec-
tiveness of the various estimates is also assessed and compared using a Markov chain Mon-
te-Carlo (MCMC) simulation. The estimated functions for the reliability parameter are tested
and shown using two real-data applications. Based on referenced criteria, the obtained results
are very convining, validating the importance of the findings.
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Some basics on the inverse Lomax distribution

The IL distribution is a specific example of a second-type generalised beta distribution.
In statistical applications, this is one of the more noticeable lifetime models. From the mathemat-
ical, probability density function (pdf), the cumulative distribution function (cdf), survival rate
function and hazard rate function of the IL distribution are defined, respectively:

,B —(l+a)
f(xa,p)=apx [1 +;j (1)
Fx;a,p)= (1+§ja 2)
S(x;a, B) =1—(1+€]a 3)

and
aﬂx—z (1 + ﬂx71)7(1+a)
1-(1+8x )™

where x > 0, a > 0, and S > 0 denote to the shape and the scale parameters, respectively. It is
understood that, for

x<0, F(x;a,8)= f(x;a, )= h(x;a, ) =0 and S(x;,5)=1

To specify these parameters, the IL distribution is also denoted as IL (a, f). The key reference
for the I distribution is [21], which studied it in various fields, including stochastic system,
economics, and life-testing. Furthermore, the IL distribution has been utilised by [22] in order
to get Lorenz to order relations between ordered data. This lifetime distribution was applied in
[23] to geophysical data, especially on the sizes of ground fibres in the USA of California.

h(x;a, p) = 4)

The stress strength parameter

The simple SSRP is based on strength variable, denoted by X, and a stress vari-
able, denoted by Y. It models a system that functions properly if X exceeds Y. Therefore,
R = P(Y < X) is a probability measure of the reliability of the system. Several authors are ex-
ploring several distinct types of such system. In this manuscript, we focus on the IL distribution,
see references and motivation developed in section Introduction. That is, suppose X and Y are
two random variables that follow the IL distribution with two different shape parameters a; and
a, and the scale parameter f3, respectively. Therefore, the expression of R can be written as the
integral:

R= [PY<x|X =x)f(va. B)dr = [ F(0,. ) f (xcn, )dx 5)
Elementary integral developments give:
® -, —(a1+l) ® —(or2 +al+l)
R =J'[1+ﬁj oy x> (1+£) dv = [ a2 (1+ﬁj dr=—32 (6)
o x x . x o +a,

It can be noted that the obtained expression is simple, and independent of .
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Fuzzy stress-strength reliability parameter
The fuzzy SSRP Rr= P(Y < X) is calculated:

Ry = J‘ I gD f (v, B) f (x50, B)dxdy -

y<x

where y4,(x) is supposed to be increasing on the difference (x — ). The [20], for example, used
the definition of the fuzzy SSRP where X and Y are two independent random variables that fol-
low the Rayleigh distribution. In this paper, we consider a simple membership function:

k
Hyy) (x)= 1——2
y
where x >y and £ > 0. Therefore, after integral calculations, the fuzzy SSRP R = P(Y < X) is
given:
0000 ~(I+ay) —(I+ay)
Ry —“‘{l—%jalﬂx_z(l+ﬂj azﬂy_2[1+ﬁ) dxdy =
0y y y

X

“l- 2k [ o ]:
ﬂz(—2+al+a2)(—1+a1+a2)(a1+a2) o ta, (8)

2k
=|1= R
( B2+ +a,)(~1+a; +a, ) +a2)J

under the constraint that o, + a, > 2. It is worth noting that, when k=0, R-=R.

Inference of stress-strength model

In this section, the estimation of the fuzzy reliability parameter Rris calculated using
two approaches (ML and MPS). Let x,, x,,..., x, be a random sample of strength, and y1, y»,..., V.,
be a random sample of stress from the IL(a;, ) and IL(a,, £) distributions, respectively.

Maximum likelihood estimation

The construction of the maximum likelihood function is given:

Ley,ay, Bl data) = [ [/ Gz, O] [/ (502, 8) =
i=1 j=1

n —(1+al) m —(1+a2)
=Halﬂxi_2 (1+£] l_Iazzﬂy;2 1+£
i=1 X Jj=1 ' Y

1

)

n m n —(+ay) ~(l+ay)
R | H(Hﬁ] (10)
=l j=1 1 / j=1 /

Yj

i= i
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After taking the logarithm of the sides, the previous equation becomes:

n
Ueay,a,, B |data) =nloga; + mloga, +(n+m) logﬂ—(1+al)21og[l+£J—
i1 i

m n n
_zzlogyj—ZZIng[—(l+a2)21og(l+yﬁJ (11)
Jj=1 i=1 J=1 J

The IL distribution parameters a,, a,, and /5 are estimated by the values of a,, a,, and
S maximizing €(a,, a,, and f|data). A system of MLE is obtained by differentiating with respect
to the three parameters o, a,, and f:

ﬂ—i_img(uﬁj (12)

1

ooy o “= X;
tel4 m o~ p
—=—-= ) log| 1+— 13
0z, @ ; [ y./} (49

and

ol n+m Lox ! oy
- = —(1 i E— | .
T (+al);1+ﬁ (wz);H/” (14)

X Vi
and find the solutions in a;, a,, and S of the system of equations defined by these derivatives
equal to 0. Then the estimates of a; and a, are given:

. n
o = =
Zlog(l+’3j (15)
P Xi
and
. m
a

2T T 7 AN
ZIOg[1+ﬂj (16)
= Yj

The SSRP of the IL distribution on traditional reliability R fuzzy SSRP Ry are calcu-
lated using the ML invariance property:

R= AalA and ﬁFI 1-— — 2k ——— R (17)
B (2+a+a)(-1+a + @) +ay)

Asymptotic confidence intervals

The usual asymptotic normality of ¢, o, and ﬁ, by using the inverse of the comput-
ed Fisher information matrix, that is, the inverse of the matrix of the second derivatives of the
log-probability function locally at the hat, can be used to calculate the 100(1 — )% CI for a;, a,,
and f. The calculation of the second derivatives of with respect to the parameters are given:

ol n ol m

2 2’ 2 2
oa; af 0o, a;
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Z _ Vi
80(16/? llHﬁ aazaﬂ =R I
l yi
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oo 0a, - Oa, 00y

%__(";m)_(1+a1)210g[1+£J (1+0!2)210g[ ﬁj

= = Yj
o _ 5!
opoay S, P
X
and
R <
0poa, - 11+£
Vi

Thus, the calculated matrix of Fisher information / ;= E[-0*€/0¢,0¢;], where i,j=1,2,3
and ¢ = (@1, ¢», ¢3) = (a4, a, 5), which is given through removed the expectation operator £, will
be used to evaluate the CI. Thus, the calculated information matrix and its inverse are given:

I
P L S i S i
- 5
opoa;  opoa,  op?

(oy:0.8){éy.05.5)
Var(a)  Cov(dy.d,) Cow(éy, f)
7' =| Cowér.dy)  Var(a,) Cowléy.p)
Cov(p.éy) Cowf.dy)  Var(p)
Thus, the 100(1 — y)% normal approximate CI for (o, o, f):

& 22, Var(é), é,+ z, WVar(é,) andp £ Z,,\Var(5) (18)

where Z,, is the percentile of the standard normal distribution with right-tail probability y/2.
Furthermore, with respect to construct the approximate CI of the hazard functions and reliabili-
ty, we must determine their variance. The delta method [24] is used to find the asymptotic esti-
mates of the variance of Rr. The delta method is a standard approach for calculating CI for MLE
functions. It takes a function that is too complex to compute the variance analytically, produces
a linear approximation of it, and then calculates the variance of the simpler linear function that
can be employed for large sample inference, [25]. We define:
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o' _[ORe ORp ORy
oa, 0a,” OB

R |k [az J_ a, [k}
oy (051+k)2 o +a, (051+052)2 o +k

ORp _ Q k ORp -0
6a2 (a1+a2)2 a1+k ’ aﬂ

Then the approximate estimate of Var(R;) is given:

@(fep):[G'}’IG} o
ap,a,y ﬂ):(al’OfZ,ﬁ)

where

and the approximate CI for R;:
ii’F iZWZ\HZZ\r(i?F) (19)

Maximum product of spacing estimation

Suppose that the data are ordered in an increasing manner. Then, the maximum prod-
uct spacing for the SSRP is denoted:
1

1 _
n+l il [ mHl m-+1
Gs(ay,y, B | data) = [HD, (xi,al,ﬂ)] {HD, ; ,az,mJ (20)

i=1 j=1
where D, (x;,a, ) = F(x;a, f) = F(x,;a, ) and Dy(y;,a, F) = F(yi;a, )= F(yi s a, p)

1
- - n - —O ﬁ
Gs(al,az,ﬂ|data)—[(l+£J 1{1—(1+£) llnl[nﬁ] 1—(1+£j IH :
X Xy i=2 X Xi

i 21)

AN AN AN A
: [1+—] 1—(1+—J I {1+—J —[1+—]
| Ym = Vi Vi

After taking the natural logarithm of both sides, the following expression is obtained:

log Gs(a;, 5, | data) =

:L{—allog[brﬁjﬂog[ {1+—] J+Zlog[{ £ 1—(1+£j1ﬂ+
n+l X X; X4
(22)
R B = o (I =
+——| —a, log| 1+— |+log| 1-| 1+— +ZIOg 1+— - 1+——
m+1 b2 Vm =) Vi Vi1
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In order to derive the normal equations for the unknown parameters, eq. (22) for
parameters o, a,, and £ are partially differentiated and zero equated. The estimates can be dif-
ferentiated by solving:

ologGs _

-1
—log
o n+1

£1+ﬂJ 1 10g[1+ﬂj
(1+£J+ ! il Yl
n+l

X 1-(1+ ﬁ)’“l
xn

R (1+ﬂj_ llog[1+ﬂ —(1+ﬂ]_ 1log[1+ﬁJ
X X X; x;

(23)

) %
{1+’BJ log[1+ﬂj—[l+’3j log{1+ﬂ]
1 i Vi1 Vi1 i Y (24)
m+14

— -a, -a,
=2 {1+ﬁJ —{1+’B]
Vi Vi

705171 7a171 705171

and

OlogGs _ 1 | —apx ! X, +Z Xn Xi1
op n+1 B —9 - ~9 -
- 1—[1+ﬂJ =2 (1+ﬂ] —[1+ﬂj
Xn X Xi1
—ay -1 —a, -1 ) -1
1 | zoon Ym Ym Vi
+ 1 IB + —a + - —-a (25)
m+ll P i g = B 2 B 2
N | I+ 1+~ - 1+
Ym yj yj—l

To find the estimates a;, o, and ,é of the unknown parameters a;, a,, and S, the fol-
lowing non-linear equations cannot be solved analytically. The estimates of a;, a,, and £ are
computed using optimization techniques such as conjugate-gradient or Newton-Raphson opti-
mization methods. Classical reliability R and fuzzy reliability R for IL probability for the SSRP
can be approximated using the invariance property of the MPSE, which has been explained by
[2, 8, 26-28] have concluded that it is the same as that of MLE.
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Bootstrap confidence intervals

In this section, we propose using bootstrap CI instead of asymptotic CI for R. We gen-
erated parametric bootstrap samples for this purpose and found two distinct bootstrap CI. First,
we used [29] percentile bootstrap approach (boot-p). The bootstrap-t approach (boot-t) was
proposed, based on the concept of [30]. See [26, 27, 31, 32] for details on how these bootstrap
CI techniques.

— Boot-p method

Step 1: Generate random samples y1, y,...,0,, from F(y) and x,, x,,...,x, from F(x).

Step 2: Generate independent bootstrap samples X, x5,..., x;, and y, y3,..., y,from F(x)
and F(y) on a;, e, and f3, respectively, after computing the MLE of all parameters a,, o, and /5.

Then, using the bootstrap samples to compute the MLE of all parameters, denoted by
a'y, oo, and .

Step 3: Replace the parameters in eq. (8) with their bootstrap estimates to obtain the
bootstrap estimate of R, which is denoted by RF.

Step 4: Repeat Step 2, B times and get a set of bootstrap estimates of Ry

Step5: Let F\(x) = P(R7< x) denotes the cdf of R}. Define Rppoo p(x) = i (x).

Thus, the asymptotic 100(1 — p)% CI for Ry is given:

P P
|:RF(B00t—p) (EJ > RF(Boot—p) [1 - Ej:|
— Boot-f method

Step 1: Same as the Boot-p method.
Step 2: Replace the parameters in eq. (8) with their bootstrap estimates to compute the
bootstrap estimate of R, which is denoted by R and the statistics:

. R,*i—RF
VV(RR)
Step 3: Repeat Step 2, B times.
Step 4: Now, let
- * ~-1 =~ *
RpBoot—n) (¥) = Rp + [V (Rp) F2 (x) where F2(x) = P(Rp <x)

denotes the cdf of Ry. The asymptotic100(1 — p)% CI for Ry is then given:

P P
|:RF(B00t—t) (E) > RF(Boot—t) (1 - Ej:|

The BE of the unknown parameters a;, a,, and f under the squared error loss function
are provided in this section. The a,, a,, and S represent the unknown parameters to be indepen-
dent from the exponential distribution:

Bayesian estimates

T (o) e, >0, b >0
(@) oce 22, @y, >0, by>0 (26)

ny(B)ce ™, B>0, b>0
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The joint posterior of @, a,, and f§ parameters symbolized by n(a;, a,, f|data) up to can
be realized by combining the likelihood eq. (26) by Bayesian inference and may be expressed:

5 (cr.tr. B data) = — T () 1y (@) 75 (B) Ly, ey, 3] data) o7
_”‘,[ﬂl () (@) m3(B) L(ey, @, B | data) deyyder,d B

000

The joint - posterior may be expressed as in eq. (28):

n —(]+al) m —(|+a2)
7 (.0, | data) o o fr e 12 T2 (1 +EJ v {1 +EJ (28)
y .

i=1 Xi Jj=1 J

The complete conditionals for a;, a,, and S can be written, up to proportionality:

o pY M
m (a | @y, f,data) oc af'e 11 H[l +—J

i=1 X

m —(1+a2) (29)
M (@, | oy, f,data) oc 0{5”64’20[2 H(l +£]
-l Vi
and
i n ﬂ —(+a) ﬂ —(I+a,)
T (B, ay.data) oc f*e 3ﬂH{H_j H(H_J (30)
i=1 Xi j=1 Y
The joint — posterior of a; and a,:
b b n ﬂ 7(1+a1) m ’B 7(1+a2)
o (o s ) af g 7 1) H(”y_J 61)
i=1 i =1 J

The insufficiency of difference-based loss functions in recent statistical literature, such
as the squared error loss. Various other loss functions have been proposed, the most well-known
of which in [33] normalised squared loss function. The posterior mean for the squared error loss
(SEL) function (symmetric) is used as the parameter estimate. As a result, when compared to
the loss function, the Bayes estimates a,, a,, 5, and R are obtained as, respectively:

R © " ~(l+a))
a1 =E(a | a,,B,data) = ja{'”efblal H[lerﬁJ da, (32)
0 i=1 i
R o . m ﬂ —(I+ay)
ar=E(a, |, f,data) = .[af”e_ 2% H{l—i——j da, (33)
0 Jj=1 i
) n —(1+a1) m —(1+a2)
B=E(Bla,,a, data)= jﬂ”+m+leb3ﬂH(1 +£] (1 +£] dp (34)
- X; - Vi
0 i=1 i = j

and
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R = E(R, | f.data) = H[l— 2k ]
00

B2+ +ay)(~l+a +a, )y +a,)

n -(+a) m —(I+ay)
~a1”a§”e7b1arb2a2 H(l +£] H[I+EJ dayda, (35)

i-1 i A i

Because the aforementioned integrals are difficult to obtain, the Bayes estimate is
evaluated numerically. The BE are obtained using the MCMC method. Gibbs’ sampling and
more general Metropolis within Gibbs samplers are sub-classes of MCMC approaches, as dis-
cussed in [20, 27, 34, 35]. The conditional posterior of a;, a,, 5, and Rrare used to produce
random samples using Metropolis Hastings algorithm (MHA). The highest posterior density
(HPD) intervals and the Bayesian credible intervals (BCI) will be computed. The [36] proposed
PHD algorithm may be expressed as:

— Organize the sample obser vations produced by MHA a,, a,, 5, and Ry as

(@M <@ <. <a), (&M <& <. <a)
(ﬁ[” <pH<..< B[A]), and (RF“] <RH<. < feF[A])

where the length of the generated of MHA 1is 4.

— The 100(1 — ¢)%, BCI for a,, a, 5, and Ry, are given
~ [(@/2)4] =~ [(1-p/2)4 ~ (@Al ~ [(1-p/2)A4
(al[w 1 (1-0/2) ])’ (az[w g (=012 ])

(ﬁ[((ﬂ/Z)A]’B[(l*wQ)A] )’ and (IQF[(WZ)A]J}F[(I*WZ)A])

Simulation

In this section, we will perform a simulation examine how each estimate of the vector
parameters o, a,, and S behaves numerically in terms of bias, mean-squared-error (MSE), and
CI length for each technique (L.CI). The simulation algorithm is constructed using the tech-
niques:

— The values of the stress-strength of IL distribution parameters a,, a,, and £ are: in tab. 1
shows the constant ;= 0.15, f = 0.5, and the modifications in a, to 0.5 and 2. In tab. 2 ex-
plains the constant a,= 0.75, o, = 2, and the modifications in f to 0.5 and 3. In tab. 3 explain
the constant a,= 3, f = 1.5, and the modifications in ¢, to 1.5 and 3.

— The sample size of strength n, and the sample size of stress, m are determined. The sample
sizes of n =30, 40, 90, and 100, and m = 30, 50, 80, and 110 are being considered.

— The number of simulation replications is represented, L = 5000.

— Equation (2) of the IL distribution function, we generate random samples of size n from a
uniform distribution U, over the interval (0, 1) and change them into samples of strength

with an IL distribution with the parameters o, and f:
-1
-1

o
— 1 s __
x;=plu, -1 , i=1,..,n

To generate random samples of size m using the IL distribution function in eq. (2)
from a uniform distribution U, with (0,1), we change them into samples of stress with an IL
distribution with the parameters a,, and f:
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-1

u]:ﬂ uzajz —1 —1’ jzl,...,m

— Estimate the reliability stress-strength of IL model for each estimation method.

— Estimate the traditional reliability stress-strength for each estimation method.

— Determine the parameter of membership function give the fuzzy reliability stress-strength
for each estimation method as: k= 0.02 is Ry and k= 0.15 iS Rp.

— Calculate various performance measures such as the bias and MSE for each method.

— Calculate L.CI for each method where the length of asymptotic CI (L.ACI), length of boot-
strap-p (L.BP), and length of bootstrap-t (L.BT) for MLE while for MPS, we used length of
L.CI as asymptotic CI and while for Bayesian, we used length of credible CI (L.CCI).

Table 1. The MLE and Bayesian of the parameters and reliability
stress-strength of IL distribution when ¢; = 0.15 and = 0.5

o0 =16,5=05 MLE MPS Bayesian MLE MPS | Bayesian
a, n,m Bias MSE Bias MSE Bias MSE | L.ACI L.BP L.BT L.CI L.CCI
0.5 630,30 | o | 0.2716 | 0.4588 | —0.1544 | 0.2815 | 0.0010 | 0.0204 | 2.4335 | 0.272574 | 0.074712 | 1.9907 | 0.5441
a; | 0.0586 | 0.0266 | —0.0310 | 0.0160 | 0.0134 | 0.0060 | 0.5973 | 0.058588 | 0.003454 | 0.4811 | 0.2830
£ [-0.0066 | 0.0587 | 0.1963 | 0.1527 | 0.0044 | 0.0093 | 0.9500 | 0.006657 | 0.000106 | 1.3250 | 0.3643
R | 0.0006 | 0.0028 | —0.0151 | 0.0029 |—0.0048 | 0.0010 | 0.2065 | 0.000560 | 0.000003 | 0.2043 | 0.1157
Ry | 0.0473 | 0.0082 | 0.0387 | 0.0078 | 0.0212 | 0.0106 | 0.3031 | 0.047275 | 0.002241 | 0.3122 | 0.3832
Ry | 0.3807 | 0.2002 | 0.4072 | 0.2356 | 0.1435 | 0.0539 | 0.9223 | 0.380670 | 0.144968 | 1.0365 | 0.5855
640,50 | a; | 0.1890 | 0.2999 | —0.1254 | 0.2059 | -0.0110 | 0.0105 | 2.0159 | 0.189630 | 0.036230 | 1.7103 | 0.3965

oy | 0.0333 | 0.0139 | —0.0294 | 0.0098 | 0.0072 | 0.0035 | 0.4435 | 0.033279 | 0.001120 | 0.3713 | 0.2159
£ [-0.0051| 0.0365 | 0.1386 | 0.0835 | 0.0040 | 0.0060 | 0.7487 | 0.004929 | 0.000061 | 0.9947 | 0.3035
R | 0.0027 | 0.0017 | —0.0102 | 0.0018 | —0.0038 | 0.0006 | 0.1600 | 0.002726 | 0.000009 | 0.1618 | 0.0908
R | 0.0484 | 0.0071 | 0.0429 | 0.0060 | 0.0067 | 0.0107 | 0.2705 | 0.048342 | 0.002342 | 0.2541 | 0.4172
Rp | 0.3543 | 0.1864 | 0.3916 | 0.2255 | 0.1059 | 0.0376 | 0.9675 | 0.354355 | 0.125627 | 1.0537 | 0.5719
6%90,80 | a; | 0.0977 | 0.1360 | —0.1015 | 0.0997 | 0.0008 | 0.0047 | 1.3946 | 0.097858 | 0.009701 | 1.1724 | 0.2712
o | 0.0156 | 0.0061 | —0.0246 | 0.0052 | 0.0042 | 0.0020 | 0.3003 | 0.015592 | 0.000249 | 0.2649 | 0.1674
£ |—0.0007| 0.0180 | 0.0849 | 0.0312 | 0.0019 | 0.0028 | 0.5265 | 0.000929 | 0.000019 | 0.6069 | 0.2016
R | 0.0020 | 0.0009 | —0.0056 | 0.0009 |-0.0014 | 0.0003 | 0.1204 | 0.001970 | 0.000005 | 0.1182 | 0.0673
Ry | 0.0437 | 0.0071 | 0.0468 | 0.0081 |—0.0100 | 0.0091 | 0.3144 | 0.043774 | 0.001923 | 0.3022 | 0.4154
Rr> | 0.2819 | 0.1410 | 0.3197 | 0.1886 | 0.0859 | 0.0288 | 0.9730 | 0.282016 | 0.079598 | 1.1529 | 0.5340
6°100,110 | a; | 0.0841 | 0.1103 | —0.0866 | 0.0839 |—0.0006 | 0.0012 | 1.2602 | 0.084369 | 0.007220 | 1.0842 | 0.1381
oy | 0.0139 | 0.0044 | —0.0194 | 0.0038 | 0.0005 | 0.0009 | 0.2552 | 0.013874 | 0.000197 | 0.2296 | 0.1148
£ [-0.0035| 0.0166 | 0.0677 | 0.0257 | 0.0002 | 0.0011 | 0.5049 | 0.003537 | 0.000030 | 0.5698 | 0.1260
R | 0.0013 | 0.0008 | —0.0057 | 0.0008 |—0.0001 | 0.0001 | 0.1130 | 0.001330 | 0.000003 | 0.1115 | 0.0443
Ry | 0.0389 | 0.0078 | 0.0425 | 0.0075 |—0.0187 | 0.0047 | 0.3118 | 0.038886 | 0.001518 | 0.2960 | 0.1725
Rp | 0.2812 | 0.1394 | 0.2788 | 0.1583 | 0.0473 | 0.0166 | 0.9632 | 0.281103 | 0.079079 | 1.1132 | 0.4765
2| 673030 | a; | 0.2625 | 0.4013 | —0.1886 | 0.2516 | 0.0041 | 0.0198 | 2.2613 | 0.262255 | 0.069106 | 1.8227 | 0.5395

o, | 0.3559 | 0.7011 | —0.2388 | 0.4389 | 0.0028 | 0.0197 | 2.9725 | 0.355985 | 0.127316 | 2.4238 | 0.5490
£ |—0.0137| 0.0569 | 0.2198 | 0.1761 | 0.0086 | 0.0082 | 0.9337 | 0.013722 | 0.000247 | 1.4022 | 0.3444

~0.0006 | 0.0042 | 0.0032 | 0.0037 | 0.0001 | 0.0007 | 0.2545 | 0.000726 | 0.000005 | 0.2385 | 0.1061
—
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Ry |-0.0022 | 0.0044 | —0.0018 | 0.0057 | -0.0003 | 0.0007 | 0.2593 | 0.002261 | 0.000009 | 0.2968 | 0.1060
R [—0.0055 | 0.0054 | —0.0223 | 0.0145 | -0.0037 | 0.0011 | 0.2884 | 0.005497 | 0.000036 | 0.4639 | 0.1290
640,50 | @ | 0.1457 | 0.2184 | —0.1779 | 0.1878 | —0.0068 | 0.0101 | 1.7415 | 0.146069 | 0.021536 | 1.5499 | 0.3805
o | 0.1852 | 0.3559 | —0.2274 | 0.3175 | -0.0028 | 0.0118 | 2.2242 | 0.184688 | 0.034451 | 2.0218 | 0.4169
£ |-0.0035] 0.0315 | 0.1639 | 0.0903 | 0.0045 | 0.0044 | 0.6958 | 0.003710 | 0.000043 | 0.9874 | 0.2536
R | 0.0006 | 0.0029 | 0.0021 | 0.0026 |-0.0008 | 0.0004 | 0.2095 | 0.000656 | 0.000003 | 0.1995 | 0.0758
Ry | 0.0006 | 0.0030 | —0.0039 | 0.0034 |—0.0010 | 0.0004 | 0.2163 | 0.000560 | 0.000003 | 0.2289 | 0.0765
R |-0.0055 | 0.0038 | —0.0405 | 0.0112 | -0.0036 | 0.0006 | 0.2409 | 0.005511 | 0.000034 | 0.3844 | 0.0911
690,80 | @ | 0.0873 | 0.1302 | -0.1308 | 0.1037 |-0.0032 | 0.0050 | 1.3731 | 0.087056 | 0.007696 | 1.1541 | 0.2760
o | 0.1198 | 0.2410 | —0.1718 | 0.1898 | 0.0033 | 0.0052 | 1.8673 | 0.119741 | 0.014569 | 1.5704 | 0.2780
£ | 0.0029 | 0.0217 | 0.1057 | 0.0428 | 0.0031 | 0.0027 | 0.5781 | 0.003005 | 0.000031 | 0.6970 | 0.1975
—0.0001| 0.0013 | 0.0024 | 0.0012 | -0.0009 | 0.0002 | 0.1405 | 0.000052 | 0.000001 | 0.1360 | 0.0529
R |-0.0009 | 0.0013 | -0.0014 | 0.0012 | —0.0011 | 0.0002 | 0.1417 | 0.000898 | 0.000002 | 0.1354 | 0.0517
R [—0.0057 | 0.0019 | —0.0248 | 0.0043 | —0.0021 | 0.0003 | 0.1709 | 0.005696 | 0.000034 | 0.2369 | 0.0637
6100,110 | @ | 0.0929 | 0.1218 | -0.1085 | 0.0916 | 0.0006 | 0.0012 | 1.3195 | 0.092822 | 0.008728 | 1.1078 | 0.1384
o | 0.1334 | 0.2045 | —0.1326 | 0.1502 | -0.0004 | 0.0013 | 1.6946 | 0.133520 | 0.018021 | 1.4284 | 0.1383
£ |-0.0069 | 0.0169 | 0.0824 | 0.0294 |-0.0004 | 0.0010 | 0.5091 | 0.007053 | 0.000066 | 0.5894 | 0.1209
R |-0.0015] 0.0012 | 0.0001 | 0.0011 | 0.0001 | 0.0000 | 0.1345 | 0.001558 | 0.000004 | 0.1302 | 0.0269
Ry |-0.0018 | 0.0011 | —0.0023 | 0.0011 | 0.0001 | 0.0000 | 0.1328 | 0.001734 | 0.000004 | 0.1292 | 0.0267
R |-0.0038 | 0.0015 | —0.0210 | 0.0028 |—0.0006 | 0.0001 | 0.1519 | 0.003828 | 0.000016 | 0.1891 | 0.0365
Table 2. The MLE and Bayesian of the parameters and reliability
stress-strength of IL distribution when ¢; = 0.75 and a, =2
a;=0.75and @, = 0.5 MLE MPS Bayesian MLE MPS | Bayesian
p n,m Bias MSE Bias MSE Bias MSE | L.ACI L.BP L.BT L.CI L.CCI
0.5 6*30,30 | oy | 0.0855 | 0.0695 | —0.0733 | 0.0425 | 0.0040 | 0.0118 | 0.9782 | 0.085543 | 0.007377 | 0.7559 | 0.4082
o, | 0.3403 | 0.7614 | —0.2314 | 0.4552 | 0.0025 | 0.0189 | 3.1513 | 0.340731 | 0.116749 | 2.4856 | 0.5347
£ | 0.0012 |0.0552| 0.2198 | 0.1652 | 0.0103 | 0.0091 | 0.9214 | 0.001164 | 0.000052 | 1.3406 | 0.3502
R | 0.0027 |0.0030 | —0.0119 | 0.0030 |-0.0004 | 0.0010 | 0.2153 | 0.002603 | 0.000010 | 0.2111 | 0.1187
Ry | 0.0029 | 0.0066 | —0.0019 | 0.0082 | -0.0027 | 0.0010 | 0.3187 | 0.002945 | 0.000015 | 0.3556 | 0.1211
R | 0.0252 |0.0225 | 0.0107 | 0.0304 |-0.0228 | 0.0095 | 0.5797 | 0.025043 | 0.000649 | 0.6826 | 0.3385
640,50 oy | 0.0681 | 0.0451 | —0.0518 | 0.0308 | 0.0002 | 0.0079 | 0.7892 | 0.068395 | 0.004717 | 0.6573 | 0.3398
a | 0.2319 [ 0.4281 | —0.1804 | 0.3151 |-0.0062 | 0.0116 | 2.3995 | 0.231542 | 0.053968 | 2.0847 | 0.4201
£ |-0.0069 | 0.0377 | 0.1447 | 0.0876 | 0.0032 | 0.0052 | 0.7614 | 0.006762 | 0.000084 | 1.0122 | 0.2798
R | 0.0005 |0.0020 | —0.0094 | 0.0020 |-0.0003 | 0.0007 | 0.1746 | 0.000437 | 0.000002 | 0.1726 | 0.0995
Ry |=0.0019|0.0045 | —0.0142 | 0.0094 |-0.0023 | 0.0006 | 0.2625 | 0.001950 | 0.000008 | 0.3769 | 0.0976
R | 0.0029 | 0.0195 | —0.0211 | 0.0265 |-0.0198 | 0.0053 | 0.5475 | 0.002885 | 0.000028 | 0.6334 | 0.2580
690,80 | ay | 0.0378 | 0.0182| —0.0353 | 0.0137 | 0.0005 | 0.0033 | 0.5072 | 0.037743 | 0.001441 | 0.4370 | 0.2216
o | 0.1252 {0.2263 | —0.1451 | 0.1721 |-0.0003 | 0.0059 | 1.7997 | 0.125617 | 0.015986 | 1.5243 | 0.3007
£ |-0.0051|0.0194 | 0.0840 | 0.0341 | 0.0008 | 0.0028 | 0.5465 | 0.005413 | 0.000048 | 0.6448 | 0.2014
R |-0.0008 | 0.0011 | —0.0085 | 0.0012 |-0.0001 | 0.0003 | 0.1302 | 0.000766 | 0.000002 | 0.1293 | 0.0637
Ry [-0.0074 | 0.0036 | —0.0209 | 0.0073 |-0.0010 | 0.0003 | 0.2321 | 0.007403 | 0.000058 | 0.3247 | 0.0647
R |-0.0074 | 0.0150 | —0.0570 | 0.0238 |-0.0093 | 0.0025 | 0.4799 | 0.007379 | 0.000069 | 0.5627 | 0.1864
6°100,110 | o4 | 0.0332 | 0.0173 | —0.0317 | 0.0133 | 0.0014 | 0.0011 | 0.4984 | 0.033228 | 0.001121 | 0.4354 | 0.1250

—
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oy | 0.1158 | 0.1763 | —0.1203 | 0.1343 | 0.0003 | 0.0013 | 1.5827 | 0.115924 | 0.013599 | 1.3576 | 0.1432
£ | 0.0002 | 0.0172| 0.0773 | 0.0282 | -0.0008 | 0.0010 | 0.5148 | 0.000190 | 0.000016 | 0.5851 | 0.1233
R | 0.0006 | 0.0008 | —0.0057 | 0.0008 |—-0.0003 | 0.0001 | 0.1119 | 0.000548 | 0.000001 | 0.1103 | 0.0357
Ry |-0.0043 | 0.0029 | —0.0190 | 0.0063 | —0.0006 | 0.0001 | 0.2100 | 0.004295 | 0.000021 | 0.3015 | 0.0346
Rp | 0.0066 |0.0138 | —0.0597 | 0.0223 | -0.0034 | 0.0007 | 0.4599 | 0.006631 | 0.000058 | 0.5362 | 0.1006
3 630,30 | a; | 0.1215 | 0.1093 | —-0.0504 | 0.0364 | 0.0105 | 0.0107 | 1.2056 | 0.121769 | 0.014930 | 0.7219 | 0.3989
oy | 04867 | 1.3777 | —0.1614 | 0.3865 | -0.0065 | 0.0188 | 4.1891 | 0.486131 | 0.237447 | 2.3547 | 0.5084
£ |-0.1150 | 1.6421 | 0.7548 | 2.0859 |-0.0020 | 0.0196 | 5.0055 | 0.115139 | 0.014848 | 4.8293 | 0.5463
R | 0.0042 | 0.0031 | -0.0094 | 0.0029 |-0.0031| 0.0009 | 0.2176 | 0.004157 | 0.000020 | 0.2079 | 0.1171
Ry | 0.0040 | 0.0031 | —0.0097 | 0.0032 |—-0.0031| 0.0009 | 0.2192 | 0.003984 | 0.000019 | 0.2182 | 0.1169
Rp | 0.0028 | 0.0039 | —0.0081 | 0.0039 | -0.0037 | 0.0009 | 0.2454 | 0.002899 | 0.000012 | 0.2419 | 0.1143
6%40,50 | a; | 0.0947 | 0.0664 | —0.0366 | 0.0268 | 0.0018 | 0.0069 | 0.9397 | 0.095214 | 0.009125 | 0.6263 | 0.3168
oy | 0.3495 | 0.7896 | —0.1268 | 0.2710 | -0.0035| 0.0113 | 3.2041 | 0.349197 | 0.122638 | 1.9804 | 0.4076
B |—0.1783]1.0533 | 0.5183 | 1.2633 | -0.0014 | 0.0115 | 3.9640 | 0.178265 | 0.032825 | 3.9115 | 0.4049
R | 0.0027 | 0.0020 | —0.0070 | 0.0018 |—-0.0006 | 0.0006 | 0.1732 | 0.002653 | 0.000009 | 0.1663 | 0.0941
Rpy | 0.0027 | 0.0020 | —0.0062 | 0.0022 | -0.0006 | 0.0006 | 0.1755 | 0.002692 | 0.000009 | 0.1810 | 0.0939
Ry | 0.0036 |0.0024 | —0.0110 | 0.0035 |—-0.0009 | 0.0006 | 0.1905 | 0.003642 | 0.000016 | 0.2653 | 0.0923
6%90,80 | oy | 0.0491 | 0.0239 | —0.0240 | 0.0140 | 0.0009 | 0.0034 | 0.5753 | 0.048780 | 0.002403 | 0.4541 | 0.2198
oy | 0.1987 | 0.3314 | —0.0830 | 0.1675 | 0.0012 | 0.0047 | 2.1191 | 0.198644 | 0.039733 | 1.5718 | 0.2639
£ 1-0.09610.6673 | 0.3389 | 0.7123 | -0.0003 | 0.0053 | 3.1815 | 0.097313 | 0.010156 | 3.0315 | 0.2771
R | 0.0025 | 0.0011 | —0.0048 | 0.0011 | 0.0000 | 0.0003 | 0.1309 | 0.002567 | 0.000008 | 0.1270 | 0.0658
Rp | 0.0024 | 0.0011 | —0.0055 | 0.0012 | 0.0000 | 0.0003 | 0.1320 | 0.002355 | 0.000007 | 0.1364 | 0.0656
Ry | 0.0013 | 0.0017 | —0.0100 | 0.0028 | —-0.0001 | 0.0003 | 0.1593 | 0.001340 | 0.000003 | 0.2030 | 0.0647
6°100,110 | a; | 0.0343 | 0.0184 | —0.0281 | 0.0118 | 0.0000 | 0.0012 | 0.5141 | 0.034191 | 0.001186 | 0.4124 | 0.1354
oy | 0.1183 {02113 | —0.1108 | 0.1242 | 0.0023 | 0.0013 | 1.7423 | 0.118149 | 0.014157 | 1.3124 | 0.1355
£ |-0.0413|0.5347 | 0.3408 | 0.5956 |-0.0001 | 0.0013 | 2.8633 | 0.041497 | 0.002243 | 2.7156 | 0.1364
R | 0.0001 | 0.0009 | —0.0056 | 0.0009 | 0.0003 | 0.0001 | 0.1169 | 0.000033 | 0.000001 | 0.1136 | 0.0372
Rr | 0.0000 | 0.0009 | —0.0059 | 0.0009 | 0.0003 | 0.0001 | 0.1176 | 0.000037 | 0.000001 | 0.1148 | 0.0371
Ry [—0.0012 ] 0.0011 | —0.0101 | 0.0016 | 0.0003 | 0.0001 | 0.1287 | 0.001142 | 0.000002 | 0.1534 | 0.0360

Table 3. The MLE and Bayesian of the parameters and reliability
stress-strength of IL distribution when a,=3, #=1.5

u=3,=15 MLE MPS Bayesian MLE MPS | Bayesian

a, n,m Bias MSE Bias MSE Bias MSE L.ACI L.BP L.BT L.CI L.CCI

"1.5] 630,30 | o | 0.3234 | 0.5652 |-0.1878 | 0.2204 | —0.0102 | 0.0184 | 2.6619 |0.323819 | 0.105305 | 1.6875 | 0.5229

ay | 0.7575 | 2.6333 | -0.4378 | 1.0253 | 0.0015 | 0.0223 | 5.6284 |0.757685 | 0.576278 |3.5809 | 0.5804

£ 1-0.0290 | 0.6362 | 0.6786 | 1.3918 | 0.0049 | 0.0188 | 3.1261 |0.029599 | 0.001512 |3.7849 | 0.5267

R | 0.0021 | 0.0032 |-0.0099 | 0.0030 | 0.0019 | 0.0005 | 0.2234 |0.002100 | 0.000008 |0.2108 | 0.0896

Rp| 0.0021 | 0.0033 |-0.0109 | 0.0034 | 0.0019 | 0.0005 | 0.2237 |0.002220 | 0.000008 | 0.2260 | 0.0895

2| 0.0020 | 0.0033 |-0.0125| 0.0036 | 0.0018 | 0.0005 | 0.2254 |0.002081 | 0.000008 | 0.2309 | 0.0892

640,50 | oy | 0.2626 | 0.3871 |—0.1362 | 0.1664 | 0.0009 | 0.0104 | 2.2122 |0.261799 | 0.068877 |1.5082 | 0.3993

oy | 0.5366 | 1.6670 | -0.3646 | 0.7776 | —0.0063 | 0.0111 | 4.6057 |0.536548 | 0.289347 |3.1491 | 0.3990

B | 0.0646 | 0.4131 | 0.4640 | 0.7886 | ~0.0071 | 0.0115 | 2.5080 |0.065362 | 0.004685 |2.9696 | 0.4039
—
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R | -0.0026 | 0.0024 |-0.0109 | 0.0023 | —0.0004 | 0.0003 | 0.1925 |0.002559 | 0.000009 |0.1833 | 0.0676

Ry | —0.0026 | 0.0024 | —0.0112 | 0.0023 | —0.0004 | 0.0003 | 0.1926 |0.002615 | 0.000009 |0.1836| 0.0676

R | —0.0027 | 0.0024 | -0.0129 | 0.0024 | —0.0005 | 0.0003 | 0.1934 |0.002713 | 0.000010 | 0.1864 | 0.0668

6%90,80 | a; | 0.1206 | 0.1659 | —0.1184 | 0.0905 0.0026 | 0.0048 1.5259 |0.120858 | 0.014748 | 1.0848 | 0.2721
ay | 0.2891 | 0.9852 | -0.2896 | 0.5153 0.0016 | 0.0053 | 3.7240 |0.290114 | 0.085107 |2.5761 | 0.2814

£ [-0.0179 | 0.2113 | 0.3110 | 0.3503 | —0.0003 | 0.0046 | 1.8016 |0.017944 | 0.000546 | 1.9749 | 0.2551

R | -0.0002 | 0.0013 |-0.0072 | 0.0013 | —0.0002 | 0.0001 | 0.1430 |0.000277 | 0.000001 |0.1382 | 0.0445

R | —0.0002 | 0.0013 | -0.0073 | 0.0013 | —0.0002 | 0.0001 0.1431 [0.000263 | 0.000001 |0.1384 | 0.0444

Rp> | —0.0003 | 0.0014 | -0.0080 | 0.0013 | —0.0002 | 0.0001 | 0.1443 |0.000310 | 0.000001 |0.1401 | 0.0441
6*100,110| o, | 0.0909 | 0.1489 |-0.1219 | 0.0865 0.0006 | 0.0013 1.4706 | 0.091711 | 0.008546 | 1.0497 | 0.1431
ay | 0.2135 | 0.8096 | —0.2943 | 0.4412 0.0007 | 0.0014 | 3.4281 |0.213238 | 0.046195 |2.3356 | 0.1508

£ 1 0.0132 | 0.2139 | 0.3053 | 0.3303 | —0.0021 | 0.0013 1.8131 |0.013675 | 0.000424 | 1.9098 | 0.1390

R | -0.0005 | 0.0011 |-0.0061| 0.0010 | 0.0000 | 0.0000 | 0.1298 |0.000476 | 0.000001 |0.1248 | 0.0244

Rpy | —0.0005 | 0.0011 |-0.0062 | 0.0011 0.0000 | 0.0000 | 0.1300 |0.000552 | 0.000001 |0.1249 | 0.0244

Ry | —0.0006 | 0.0011 |-0.0069 | 0.0011 0.0000 | 0.0000 | 0.1307 |0.000578 | 0.000001 |0.1259 | 0.0241

3| 630,30 | @ | 0.7504 | 2.7398 | —0.4920 | 0.9600 | 0.0054 | 0.0186 | 5.7863 |0.750176 | 0.565001 |3.3231 | 0.5401
a, | 0.7480 | 2.7824 | —0.4971 | 0.9547 0.0015 | 0.0204 | 5.8474 |0.750173 | 0.565112 |3.2990 | 0.5352

£ | 0.0230 | 0.8414 | 0.7260 | 1.5332 | —0.0030 | 0.0182 | 3.5963 |0.023703 | 0.001398 |3.9339| 0.5217

R | -0.0003 | 0.0040 |-0.0004 | 0.0035 | —0.0003 | 0.0003 | 0.2479 |0.000402 | 0.000004 |0.2325 | 0.0644

Ry | —0.0003 | 0.0040 |-0.0005| 0.0035 | —0.0004 | 0.0003 | 0.2478 |0.000359 | 0.000004 |0.2325| 0.0644

Rr | —0.0003 | 0.0040 |—0.0009 | 0.0035 | —0.0004 | 0.0003 | 0.2477 |0.000394 | 0.000004 |0.2322 | 0.0643

6°40,50 | oy | 0.5504 | 1.7949 |-0.4026 | 0.7333 0.0021 | 0.0116 | 4.7905 |0.550614 | 0.304686 |2.9642 | 0.4147
ay | 0.5014 | 1.7487 | —0.4227 | 0.7614 | —0.0081 | 0.0120 | 4.7992 |0.499479 | 0.251045 |2.9938 | 0.4258

£ | 0.0047 | 0.5719 | 0.5404 | 0.9298 | —0.0018 | 0.0100 | 2.9658 |0.004366 | 0.000576 |3.1321 | 0.3909

R | -0.0035 | 0.0030 |-0.0020 | 0.0027 | —0.0009 | 0.0002 | 0.2144 |0.003547 | 0.000015 |0.2033 | 0.0492

Rpy | —0.0035 | 0.0030 | —0.0020 | 0.0027 | —0.0009 | 0.0002 | 0.2144 |0.003481 | 0.000015 |0.2033 | 0.0491

Rpy | —0.0035 | 0.0030 |-0.0023 | 0.0027 | —0.0009 | 0.0002 | 0.2142 |0.003451 | 0.000015 | 0.2029 | 0.0489

690,80 | a; | 0.3011 | 0.9829 |-0.3068 | 0.4395 0.0016 | 0.0051 | 3.7046 |0.302277 | 0.092301 |2.3047 | 0.2717
a, | 0.3037 | 1.0016 |-0.3106 | 0.4426 0.0027 | 0.0050 | 3.7399 |0.303082 | 0.092757 |2.3073 | 0.2795

£ | 0.0089 | 0.2930 | 0.3423 | 0.4075 | —0.0042 | 0.0047 | 2.1228 |0.009187 | 0.000352 |2.1133 | 0.2652

R | 0.0001 | 0.0014 |-0.0004 | 0.0013 0.0001 | 0.0001 | 0.1457 |0.000081 | 0.000001 |0.1409 | 0.0327

Ry | 0.0001 | 0.0014 |-0.0004 | 0.0013 0.0001 | 0.0001 | 0.1457 |0.000081 | 0.000001 |0.1409 | 0.0327

R | 0.0001 | 0.0014 |-0.0005| 0.0013 0.0001 | 0.0001 | 0.1456 | 0.000097 | 0.000001 |0.1408 | 0.0327
6°100,110 | o | 0.2699 | 0.8529 | -0.2787 | 0.3682 | —0.0011 | 0.0013 | 3.4638 |0.272185 | 0.074877 |2.1139 | 0.1380
ay | 0.2481 | 0.8010 |—0.2922 | 0.3669 | —0.0003 | 0.0013 | 3.3725 |0.247919 | 0.062165 |2.0810 | 0.1388

£ | 0.0000 | 0.2353 | 0.2899 | 0.2999 | —0.0006 | 0.0013 1.9026 |0.000338 | 0.000236 | 1.8220 | 0.1385

R | -0.0015 | 0.0012 |-0.0012 | 0.0012 | 0.0001 | 0.0000 | 0.1374 |0.001410 | 0.000003 | 0.1330 | 0.0163

Rr | —0.0015| 0.0012 [-0.0012 | 0.0012 | 0.0001 | 0.0000 | 0.1374 |0.001534| 0.000004 |0.1330| 0.0163

Rr | —0.0015 | 0.0012 |[-0.0013 | 0.0011 0.0001 0.0000 | 0.1373 ]0.001507 | 0.000003 |0.1328 | 0.0162
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From tabs. 1-3, the simulation results are concluding:

— It is observed that MSE (MLE) > MSE (MPS), bias (MLE) > bias (MPS), and
L.CI (MLE) > L.CI (MPS) in most parameters i.e. MPS performs better than MLE in the
sense of bias, MSE, and L.CI.

— When the & value is increased, the fuzzy reliability stress-strength values tend to the conven-
tional reliability stress-strength values, suggesting that the variability goes away.

— As predicted, when the sample sizes, n and m, are increased, the bias and MSE values for
each parameter decrease.

— When & = 6, the fewest bias values for all calculations, as well as the smallest MSE values
for fuzzy and traditional reliability, are found.

— When g, is increased, the largest MSE values for the parameters are obtained.

— When a, is increased, the smallest MSE values for the parameters are obtained

— In comparison MLE and MPS based on minimum bias, and MSE, Bayesian estimators per-
form better.

— When a,< a, , reliability stress-strength value increases.

— The length bootstrap-z (L.BT) is the smallest length of CI.

Applications of real data

Following are two real data sets that were covered in this section.

First real data

We present a data analysis utilizing real data from [37, 38] to compare two distinct
strategies for predicting unit capacity factors dubbed SC16 and P3. This data has been used for
a different model of stress-strength such as in [39]. The information is SC16 data: x is (0.853,
0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 0.403, 0.344, 0.213, 0.116, 0.116, 0.092, 0.07, 0.059,
0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, 0.006) and P; data: y is (0.853, 0.759, 0.874,
0.8, 0.716, 0.557, 0.503, 0.399, 0.334, 0.207, 0.118, 0.118, 0.097, 0.078, 0.067, 0.056, 0.044,
0.036, 0.026, 0.019, 0.014, 0.01).

Using the Kolmogrov-Smirnov (KS) test, we conclude that the IL distribution with
Harameter& = 1.00772 and #= 0.1151 can be fitted on strength variable, and o= 1.5314 and
£ =0.07559 can be fitted on stress variable, which are shown in tab. 4. Also figs. 1 and 2 con-
firmed fitting of theses data.

8 -
107 107 p_pplotforlL
F(x) £(x) 4+
0.8 IL 6
Empirical
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Figure 1. Estimated cdf, pdf and pp-plot for strength variable
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Table 4. The KS test for the strength
and stress variable for first data

X y
DKS 0.1389 0.1408
PVKS 0.7665 0.7761
1.0 1.0
P —Pplot for IL
F(y) 57
IL
0.84 fly)
Empirical 4
0.6
3A
0.4
za
0.5 14
0.0 0-
T T T T T r T T T T 1 T T T T T T
0.0 0.2 04 06, 08 00 02 04 06 08 y 1.0 00 02 04 06 08 10

Probability (y)

Figure 2. Estimated cdf, pdf and pp-plot for stress variable
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Figure 3. Iterations and convergence of MCMC results for first data of stress-strength model
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Second real data

We use the successive failure times (in hours) of the air cooling system of jet jets, which
were first reported by [40], for real-world application. We give two jet air-plane data sets for em-
pirical analysis, each of which contains the following observations: x is (97, 51, 11, 4, 141, 18,
142, 68,77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24) y is (90, 10,
60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62, 130, 208,
70, 101, 208). This data used based on stress strength model of inverse Chen distribution by [35].
Using the KS test, we conclude that the IL distribution with parameter a=1.5152 and ﬂ 30.070
can be fitted on strength variable, and o= 536.02702 and /)’ 0.07928 can be fitted on stress vari-
able, which are shown in tab. 6. Also Figures 5 and 6 confirmed fitting of theses data.

0.5 1.0 1.5 20 25

p1
2.5
p2
2.0
1.5 034
1.0 H
0.5
-0.57 -0.53 -
- 015
- 0.05
T T T T T T T T T T T I T
05 1.0 15 20 25 30 005 015 025 035
Figure 4. Scatter-plot matrices of MCMC results for first data of
stress-strength model
Table 5. Classical and Bayesian estimation based on
stress-strength model for first real data
MLE MPS Bayeisna
Estimates SE Estimates SE Estimates SE
a, 1.3341 0.5609 1.0523 1.9566 1.3883 0.4736

123 1.1091 0.4289 0.8898 1.5421 1.1787 0.3791
s 0.0954 0.0598 0.1201 0.3413 0.1021 0.0443
R 0.5461 0.5418 0.5408
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Figure 5. Estimated cdf, pdf and pp-plot for strength variable for second data
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Figure 6. Estimated cdf, pdf and pp-plot for stress variable for second data

Table 6. The KS test for the strength and
stress variable for second data

x Y
DKS 0.1792 0.1503
PVKS 0.3509 0.5292

Table 7. Classical and Bayesian estimation based on
stress-strength model for second real data

MLE MPS Bayeisna
Estimates SE Estimates SE Estimates SE
a 3.3111 1.5052 2.3896 3.7527 3.5419 1.1656
o 2.2060 0.8479 1.6119 2.2741 2.3442 0.6526
s 16.5056 8.4668 22.4831 6.8787 16.7764 5.9869

R 0.6001 0.5972 0.6017
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Figures 3 and 7 show trace and normal curve of posterior distribution for MCMC esti-
mation for the first and the second data, respectively. Also theses figures confirmed convergence
of MCMC results. Figures 8 and 4 show the MCMC samples as a pairs plot, with the scatter
plot matrix in the top plot, correlation coefficients in the bottom plot, and marginal frequency of
proposed distribution as normal distribution for each parameter on the diagonal. The parameters
(P1 with P3) and (P2 with P3) have a negative correlation in this diagram, where P3 is the joint
parameter £ of the strength and stress variables.
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Figure 7. Iterations and convergence of MCMC results for second data of stress-strength model

We note the Bayesian estimation method have the smallest standard error (SE), then
this the best estimation methods. Also noted as k increase then increases reliability stress-
strength of IL model. The value of reliability stress-strength is larger in MPS than anther meth-
ods.

Conclusion

With X and Y being independent inverse Lomax random variables, the new method of
estimating fuzzy stress-strength reliability Rr = P(X > Y), is receiving a lot of attention due to
the characteristics of Ry that make the analysis more sensitive and trustworthy. To present the
point and interval estimations of all parameters as well as the fuzzy stress-strength reliability
function R, the Bayesian techniques as well as the maximum likelihood and maximum prod-
uct spacing are introduced. Additionally, the highest posterior density (HPD) intervals for the
fuzzy reliability function and the unknown parameters of the inverse Lomax distribution are
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Figure 8. Scatter-plot matrices of MCMC results for second data
of stress-strength model

examined, as well as the bootstraps p and ¢ CI. Therefore, MCMC samples are produced from
the posterior density function using the Metropolis-Hasting algorithm. To evaluate the effec-
tiveness of the method used here, a simulated data set is used. The ML and Bayes estimates
are supplied together with the appropriate CI lengths. Additionally, the the reliability stress-
strength function was developed using two real data sets as well as a simulated data set.
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