
Tolba, A. H., et al.: Bayesian and Non-Bayesian Estimation Methods to ... 
THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 1, pp. S285-S302	 S285

BAYESIAN  AND  NON-BAYESIAN  ESTIMATION  METHODS  TO 
INDEPENDENT  COMPETING  RISKS  MODELS  WITH  TYPE  II   

HALF  LOGISTIC  WEIBULL  SUB-DISTRIBUTIONS  WITH   
APPLICATION  TO  AN  AUTOMATIC  LIFE  TEST

by

Ahlam H. TOLBA a, Ehab M. ALMETWALLY b, Neveen SAYED-AHMED b,c*, 
Taghreed M. JAWA d, Nagla YEHIA e, and Dina A. RAMADAN f 

a Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt 
b Department of Statistics, Faculty of Business Administration,  

Delta University for Science and Technology, Cairo, Egypt 
c Statistics Department, Faculty of Commerce (Girl Branch), Al-Azhar University, Cairo, Egypt 

d Department of Mathematics, College of Science, Taif University, Taif, Saudi Arabia 
e Department of Statistics, Faculty of Economics and Political Sciences, Cairo University,  

Faculty of Science, Al-Faisaliah Campus, University of Jeddah, Jeddah, Saudi Arabia 
f Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Original scientific paper 
https://doi.org/10.2298/TSCI22S1285T 

In the survival data analysis, competing risks are commonly overlooked, and con-
ventional statistical methods are used to analyze the event of interest. There may 
be more than one cause of death or failure in many experimental investigations of 
survival analysis. A competing risks model will be derived statistically applying 
Type-II half logistic weibull sub-distributions. Type-II half logistic weibull life-
times failure model with independent causes. It is possible to estimate parameters 
and parametric functions using Bayesian and classical methods. A Bayes estima-
tion is obtained by the Markov chain Monte-Carlo method. The posterior density 
function and the Metropolis-Hasting algorithm are used to calculate the Markov 
chain Monte-Carlo samples. Simulation data is used to evaluate the performance 
of the two methods according to the Type-II censored system. As a test of the dis-
cussed model, a real data set is provided.
Key words: maximum likelihood estimator, Markov chain Monte-Carlo, 

competing risks models, Bayesian method, mean squared error

Introduction

In time-to-event data, competing risks are often recognized, and regression analysis 
of such data has just received appropriate analytical advancements. Models for estimating the 
lifetimes of a certain risk have been produced in recent years, however, taking into account 
competing risk variables. The time of failure and the indicator variable that indicates the spe-
cific reason for the failure of an individual or an item are the data for competing risk models. 
Analysis of competing risk data in most cases assumes that failure has independent causes. 
Despite the fact that the basic concepts of model dependence may be more achievement, there 
is some attention on its feasibility [1, 2] and several other authors, such as [3-12], verified that 
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the data could not be used to examine the hypotheses of independent failure times without 
information on covariance. See [13-21] of different applications of lifetime distributions in sur-
vival analysis. Competing risks and censoring are two important characteristics in competing 
risks analysis. The time elapsed between occurrence of an event and when it is over is denoted 
by T. In order to fully see this T, we must first censor it. When we know that an event has not 
occurred for some time C, but we can no longer follow the individual to measure T accurately, 
we observe Z = min(C, T) as a result of the right-censoring phenomenon.

In order to use time-to-event analytical techniques, we must make the key assumption 
that the censoring process is not informative. Therefore, knowing an individual’s censoring 
time provides additional information about their future chance of experiencing a particular trau-
matic incident. In other words, the instant probability of being censored does not depend on the 
future event time.

Using biomedical engineering modelling of age data was proposed by [22]. Since 
the intensity function of the TIIHLW distribution has many-forms (right-skewed, symmetric, 
unimodel inverse, and J-shaped), so a variety of real datasets are analyzed correctly [22]. The 
method of maximum likelihood is used when the cause of the failure either known or unknown.

In this paper, we study and analyze the first type of data when there are k ≥ 2 failure 
causes. It is necessary to analyze lifetime data for the purpose of the three parameters of TII-
HLW distribution [22] since the hazard is likely to be increased or have the shape of a bathtub. 
Only the TIIHLW distribution allows a bathtub shaped hazard. Different parameters of these 
distributions are estimated using maximum likelihood and Bayesian methods under Type-II 
censoring data. On the other hand, we obtain asymptotically confident intervals and estimate 
failure risks.

Description model

The model describes as follows, it is assumed identical N and independent elements 
in a systems. Each element is allocated corresponding one of k, k ≥ 2 different failure modes. 
Every subject is examined until it fails or time runs out. The item fails due to a single cause in 
the failure situation. The test will end when all objects fail, the censored times are reached, or a 
combination of the two. There will be two observable values when an item fails: T, denotes the 
object’s lifetime, and δ ∈{1, 2,..., k} denotes the cause of failure. We simply keep track of the 
censoring time in a censored condition. We use δ = 0 for the censoring example to keep the no-
tations simple. Furthermore, the following assumptions must be followed throughout the paper: 
–– The survival function is S(.), F(.) represents the cumulative distribution function, f(.) de-

notes to the probability density function, and the object’s lifetime is Ti, i = 1, 2,..., N. 
–– The Tji represents the lifetime of failure that reason j (j = 1, 2,..., k), will object to i,  

i = 1, 2,..., N at a random time. The Tji, for i = 1, 2,..., N are identically distributed ran-
dom variables since the N objects on the life test are identical. We also assume that Tji, for  
i = 1, 2,..., N, has the cumulative distribution relation Fj(.) (also known as the sub-distribu-
tion form of cause j), the survival function Sj(.), the probability density fj(.), and the hazard 
rate function hj(.), for j = 1, 2,..., k. 

Using fj(t), hj(t), and Sj(t), the survival function S(t) is given:

=1

( ) = ( )
k

j
j

S t S t∏ (1)

the density function f(t) is constructed:
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and the formulation of h(t) is constructed:

=1

( ) = ( )
k
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j

h t h t∑ (3)

The sum of the probabilities of the various reasons is the instantaneous chance of 
failure. 
–– We let Tji follows TIIHLW distributions with unknown parameters αj, βj, and λ j, denoted by 

TIIHLW(αj, βj, λ j), for i = 1, 2,..., N and j = 1, 2,..., k. That is, the cumulative distribution 
function is Tji. 
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the probability density is calculated:
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the survival rate function:

1 1 e

( ; , , ) = ,  , , > 0

1 1 e

j

j

j
tj

j j j j j j j
j

tj

S t

β

β

λ
α

λ
α

α β λ α β λ

−

−

 
 − −
  

 
 + −
  

(6)

and the hj(t) function can be written:
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(7)

where λ j and βj are shape parameters and αj is the scale parameter.
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Maximum-likelihood estimation

More elements Tij is considered independent and identically distributed, (iid) on the 
causes of failure j = 1, 2,..., k. The first n items are assumed to be failures, and the subsequent 
(N – n) observations are censored, without losing generality. Whereas the first n observations 
include both failure observations and failure causes, the other (N – n) items include only the 
censored times and no failure. It is possible to describe the available data (T1, δ1), (T2, δ2),..., 
(TN, δN), where:

if = , {1,2,... }
=

if = 0 (  is a censoring time)
ij i

i
i i i

T j j k
T

T T

δ

δ

∈



(8)

Then the likelihood function is written:
( = )

( =0)
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∏ ∏ ∏ (9)

where ω is the vector of k: unknown parameters

	 1 2 1 2 1 2= ( , ,..., , , ,..., , , ,..., )k k kω α α α β β β λ λ λ

The model assumptions and the well-known correlations between the reliability metrics are 
used to calculate the survival function, hazard rate function, and probability density function. 
The likelihood equation is given:

( = )
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As a result of calculating the log-likelihood function for both sides of eq. (10), we 
obtain:

( )
=1 =1

= ( = ) log ( ) log ( )
N K

i j i j i
i j

I j h t S tδ + ∑∑ (11)

where I(A) represents an indicator function, where I(A) = 1 for A is true and 0, otherwise. 
Equations (6) and (7) can be substituted for eqs. (10) and (11) to obtain for competing risks 
model with unknown cause parameters for a TIIHLW distribution, construct the likelihood and 
log-likelihood functions are written:
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and	
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The set of values for components ω^  maximizes the log-likelihood function is known 
as the maximum likelihood point estimate.

The derivatives for 𝓁 in order to both of α𝓁, β𝓁, and λ𝓁, 𝓁 = 1, 2,..., k are: 
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The Koronecker delta is expressed by the constant δij, l, j = 1, 2, ..., k. Set
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The system of k equations defined for the parameters αj, βj, and λj, j = 1, 2,..., k are 
solved in order to obtain maximum-likelihood point estimates for the parameters. To estimate 
the parameters, the Newton-Raphson method is used, while the obtained system is a non-closed 
form, and therefore, does not have an analytic solution. To get the information matrix of 𝓁, we 
require the second partial derivative with respect to αj, βj, and λ, which are
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Confidence intervals
As a result, it is impossible to obtain the parameter maximum likelihood estimators in 

analytic form and determine their real distributions. The asymptotic distribution for the parame-
ters ω = (α1,..., αk, β1,..., βk, λ1,..., λk) is constructed by using the maximum likelihood estimators. 
the CI for ω = (α1,..., αk, β1,..., βk, λ1,..., λk).

It is well known that:
1

3ˆ ˆ, ( )kN Iω ω ω− →   (17)

where N3k represents 3k-multidimensional the normal distribution and the covariance matrix, 
I –1(ω^ ),which consists of the inverse of the information matrix for (ω^ ). Using the second partial 
derivative the information matrix for 𝓁 is obtained by estimating the maximum likelihood point 
with respect to the unknown parameters:
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i j

I E i j kωω
ω ω
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and ω = (α1,..., αk, β1,..., βk, λ1,..., λk). Thus, 100(1 – γ)% two sided CI for ω is constructed:

1
/2ˆ ˆ( )Z Iγω ω−± (19)

with Zγ/2 represents the upper γth/2 percentile of a standard normal distribution.
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Bootstrap CI

The [23, 24] are used to create the percentile bootstrap (Boot-p) and bootstrap -t con-
fidence intervals for the TIIHLWD unknown parameters αj, βj, and λj. For more information of 
bootstrap CI for competing risks model see [25-28]. 

Boot-p algorithm 

The steps for the Boot-p algorithm are written as: 
Step 1. Generate a sample with replacement the TIIHLW(αj, βj, and λj) distribution 

and compute the estimate ωi = (α1i,..., αki, β1i,..., βki, λ1i,..., λki). Next, obtain the sample X using 
ωi and then compute ωi. 

Step 2. Repeat Step 1, B times. 
Step 3. Let ω^ 

Boot – p(x) = F^  –  1
1 (x), with F^

 1 (x) = P(ω^ * 
i ≤ x) indicates to the CDF of ω^ * 

i . 
Then, the 100(1 – p)% CI for ωi is obtained:

ˆ ˆ, 1
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(20)

Boot-t algorithm

Step 1. Same as the Boot-p algorithm. 
Step 2. Compute the following statistic. 

	

ˆ ˆ
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ω ω
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∗
∗
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Step 3. Repeat Step 2, B times. 
Step 4. Now, let

	
1

2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) = ( ) ( ), where ( ) = ( ) 

Booti t i ix Var F x F x P T xω ω ω ∗ − ∗
− + ≤

denotes the CDF of T*. The approximate 100(1 – p)% CI for ωi, i = 1, 2,..., NBoot is then given:

Boot Boot
ˆ ˆ, 1

2 2i t i t
P Pω ω− −

    −        
(21)

Competing risks under Type II censored data

It is assumed that the N independent elements undergo a lifetime test, with k taken into 
account prior the experiment, [29]. The initial failure, T1:k, as well as the cause of the failure, δ1, 
are both recorded. The second failure T2:k was also recorded, as well as the explanation for fail-
ure δ2. The experiment is repeated until the kth failure, Tk:k and its cause δ1 are observed, along 
with its cause δ1. Because it contains the following variables, it is referred to Type-II competing 
risk data: (T1:k, δ1) < (T2:k , δ2) < ...< (Tk:k, δk). Under the Type-II competing risk sample, the joint 
likelihood function: t = {(T1:k, δ1), T2:k , δ2),...,(Tk:k, δk)}is given:

[ ] [ ] [ ]( =1) ( =2)
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where S(.) is the survival function and
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Let the causes follow the TIIHLW distribution with unknown parameters, we obtain 
the likelihood function for the Type II censored scheme under competing risk:

1 2

1 2

1 2

1 1 e 1 1 e
!( , , , ) =

( )!
1 1 e 1 1 e
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(23)

Bayesian estimation

Due to the computational progress in the past few years, Bayesian estimation is one 
of the most important statistical methods for estimating parameters of parametric survival mod-
els. In time-event analysis, the setting of competing risks can be used whenever the presence 
of censored observations has to be taken into account. To evaluate the unknown parameters of 
Gompertz distribution in a competing risk model with a very general censoring scheme, Ba-
koban and Abd-Elmougod [30] employed Bayesian estimation based on the MCMC method. 
Almarashi et al. [29] applies the MCMC algorithm to the Nadarajaha and Haghighi distribution 
based on type-II competing risk data. Sarhan et al. [12] discussed the maximum likelihood 
method and Bayesian method to estimate the parameters of the lifetime Weibull sub-distribu-
tion. Bantan et al. [31] discussed the Bayesian analysis of partially accelerated life tests for 
weighted Lomax distributions. The Bayesian estimation for modified Kies exponential lifetime 
distribution under accelerated life tests was presented in [32].

In this section, we consider Bayesian inference of the unknown parameters αj, βj, and 
λj of the TIIHLWD. It is assumed that αj, βj, and λj have the independent gamma prior distribu-
tions with shape parameter aj1, bj1, and cj1 and scale parameter aj1, bj1, and cj1, respectively.

Thus, the joint prior density of ω = (α1,..., αk, β1,..., βk, λ1,..., λk) , up to a constant is: 
1 1 1 1 1 12 2 2

=1

( ) e e  e , > 0, > 0, > 0
k a b ca b cj j jj j j j j j

j j j j j j
j

g
α β λ

ω α β λ α β λ
− − −− − −

∝∏ (24)

In order to generate the joint posterior density function ω, we combined the joint prior 
density eq. (19) and the likelihood function (12) and applied the Bayes’ theorem:
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(25)

where

 	 =1

= ( = )
N

j i
i

n I jδ∑
The posterior mean of any function of the vector of unknown parameters ω, say n (ω), is the 
Bayesian estimate of that function under the quadratic loss function:

|.
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ˆ = ( ( )) = ( ) ( | .) dE gων ν ω ν ω ω ω
∞

∫ (26)

Analytical solutions do not exist for the integral in eq. (21) and the normalizing con-
stant. As a result, Bayesian analysis of the underlying model should be performed using numer-
ical methods. A Markov chain Monte-Carlo (MCMC) simulation technique will be used for the 
analysis among other techniques. To obtain random raws from a joint posterior distribution in 
eq. (20), the MCMC algorithm can be used, without having to calculate a normalised constant. 
A model parameter or a model characteristic study can be performed using random draws. 

Markov chain Monte-Carlo method

Techniques such as MCMC have been proven successful in modern Bayesian sta-
tistical analysis. The MCMC is a method of summarising posterior distributions that does not 
require calculation of the normalised constants. According to [1], the Bayesian statistical infer-
ence process highly depends on MCMC techniques. This modified version of the MCMC al-
gorithm is called the Metropolis Hastings sampler. There are two requirements for an effective 
MCMC proposal, it must be simple to replicate and must closely resemble the desired posterior 
distribution function. By using acceptance-rejection rule, we choose our target posterior distri-
bution at random. Random draws from the posterior distribution g(ω) are simulated using the 
Metropolis-Hastings algorithm:
–– Suppose the initial values ω(0). 
–– Set a limit on the number of trails that obtained for random drawings, say M. 
–– Repeat the following steps for i = 1,..., M. 
–– Set ω = ω(i –1). 
–– A proposal distribution P(ω*|ω) can generate a candidate ω*. 
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–– Calculate the acceptance probability 

	

( | .) ( | )= min 1,
( | .) ( | )

g P
g Pω
ω ω ωη
ω ω ω

∗ ∗

∗ ∗

 
 
 

–– Generate a u1 from a Uniform (0, 1) distribution. If u1 < ηω, accept the proposal and set  
ω(i) = ω*, otherwise ω(i) = ω(i – 1). 

The relative risks

The failure probability relation of each cause of failure in the presence of all others 
will be explored, as well as the risk associated with each cause of failure relation. In the exis-
tence of all causes, the failure relation of cause j at time x is defined [7, 8]:

=10
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The risk cause is defined:
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The reasons for failure follow the TIIHLW distribution, πj can be derived by calculat-
ing the integral by substituting eqs. (5) and (6) into eq. (28):
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When the integrated function in eq. (29) is analyzed at the maximum likelihood esti-
mates of the parameters, the maximum likelihood estimate of eq. (29) can be determined using 
numerical integration using the invariant property. We will combine the random drawings from 
the joint probability relation with the integral in eq. (29) Bayesian analysis to obtain random 
draws from the posterior distribution of πj, which we can then use in Bayesian analysis for  
πj, j = 1, 2,..., k.

Simulation study and comparisons

The MSE and CI for the bias estimators of MLE and Bayesian estimation methods 
which considered in this paper are not obtain in closed form. For this reason, we will conduct a 
simulation study in which assess all of the aforementioned estimators for αj, βj, and λj;  j = 1, 2 
of the TIIHLW distribution under competing risks with Type-II censoring. The simulation study 
has the following inputs.

The number of iterations is 10000 iteration, and the number of sample obtained by 
bootstrap is 1000 sample.

The generated samples from TIIHLW distribution under competing risks with Type-II 
censored are calculated by using different sample sizes, n, as 50, 100, and 200. The number of 
observed failure times from Type-II censored are calculated by using different ratio of sample 
size, r, as 60% and 90%.
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Different exact values of parameter of the TIIHLW distribution are determined as:

	

1 1 1 2 2 2

1 1 1 2 2 2

Case 1: = 0.25, = 0.25, = 0.4, = 0.35, = 0.3, = 0.45
Case 2 : = 1.7, = 0.6, = 1.6, = 1.9, = 0.45, = 1.45

α β λ α β λ
α β λ α β λ

Equation (29) is used to produce MLE estimators of TIIHLW distribution under com-
peting risks with Type-II censored. The Newton-Raphson algorithm can be used to discover the 
best MLE solution. Moreover, Bayesian estimates of αj, βj, and λj;  j = 1, 2 will be derived by us-
ing the gamma distribution with scale and shape parameters as the prior of the hyper-parameter. 
As detailed in [33], the hyper-parameters of the informative priors are obtained using the same 
technique. The 95% confidence interval (CI) length for each parameter is calculated using the 
asymptotic confidence interval (ACI), the credible confidence interval (CCI), and the bootstrap 
confidence intervals (Bt and Bp).

Table 1. Point and interval estimation method for parameters of the TIIHLW distribution 
under competing risks based on Type II censored sample: Case 1, r = 0.6 

 Case 1  Point estimation  CI  Bootstrap 
r = 0.6  MLE  Bayes  MLE  Bayes  MLE  Bayes 
n   Bias  MES  Bias  MES  ACI  PCI  Bt  Bp  Bt  Bp 

50 

 λ1  0.4535  0.5189  0.4639  0.2488  2.1949  2.0485  0.0679  0.0723  0.0619  0.0705 
α1  –0.2003  0.0534  –0.1916  0.0381  0.4513  0.0875  0.0143  0.0139  0.0028  0.0029 
 β1  0.0371  0.0195  0.0486  0.0191  0.5283  0.1952  0.0167  0.0159  0.0069  0.0067 
 λ2  0.2645  0.0958  0.2218  0.0823  0.6306  0.6081  0.0199  0.0199  0.0207  0.0194 
 α2  –0.2272  0.0544  –0.1396  0.0263  0.2064  0.0669  0.0066  0.0066  0.0021  0.0021 
 β2  0.1319  0.0725  0.0790  0.0324  0.9209  0.8236  0.0307  0.0307  0.0260  0.0263 

100 

 λ1  0.3153  0.2656  0.4128  0.1996  1.5990  1.5802  0.0540  0.0502  0.1222  0.1198 
 α1  –0.2233  0.0561  –0.1810  0.0348  0.3093  0.0551  0.0095  0.0097  0.0017  0.0018 
 β1  0.0546  0.0155  0.0753  0.0122  0.4391  0.0945  0.0134  0.0140  0.0031  0.0030 
λ2  0.2594  0.0900  0.3903  0.0877  0.5912  0.5905  0.0181  0.0181  0.0192  0.0181 
α2  -0.2307  0.0558  -0.1264  0.0232  0.2008  0.0623  0.0066  0.0066  0.0020  0.0020 
β2  0.0579  0.0324  0.0439  0.0170  0.6689  0.4558  0.0215  0.0215  0.0147  0.0145 

200 

λ1  0.1756  0.0828  0.3540  0.0749  0.8940  0.8152  0.0285  0.0274  0.0808  0.0672 
α1  -0.2425  0.0604  -0.2208  0.0325  0.1568  0.0259  0.0055  0.0048  0.0008  0.0008 
β1  0.0812  0.0144  0.0685  0.0116  0.3473  0.0683  0.0110  0.0114  0.0022  0.0020 
λ2  0.2352  0.0642  0.2355  0.0637  0.3691  0.2578  0.0120  0.0120  0.0085  0.0082 
α2  -0.2412  0.0590  -0.1833  0.0377  0.1087  0.0464  0.0036  0.0036  0.0015  0.0015 
β2  0.0052  0.0113  0.0258  0.0129  0.4170  0.2604  0.0132  0.0132  0.0098  0.0081 

From tabs. 1-4 we can conclude the following: 
–– Based on Type II censored samples, the TIIHLW probability has a decreasing bias, MSE, 

and CI length as the sample size increases.
–– Bias, MSE, and L.CI values for the parameters of the TIIHLW distribution under competing 

risks decrease for the number of observed failure times increases as r increases based on 
Type II censored sample.

–– Based on Type II censored samples, Bayesian estimates have a significantly increased effi-
ciency than MLE for most parameters of TIIHLW distribution.

–– The length of CCI is smaller than the length of ACI.
–– The length of bootstrap-t CI is smaller than the length of bootstrap-p. 
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Table 2. Point and interval estimation method for parameters of the TIIHLW distribution 
under competing risks based on Type II censored sample: Case 1, r = 0.9 

 Case 1  Point estimation  CI  Bootstrap 

r = 0.9  MLE  Bayes  MLE  Bayes  MLE  Bayes 

n   Bias  MES  Bias  MES  ACI  PCI  Bt  Bp  Bt  Bp 

50 

 λ1  1.0576  0.4668  0.4854  0.2690  2.9071  1.5285  0.0875  0.0962  0.0846  0.0843 
 α1  0.0042  0.0524  –0.0136  0.0229  0.8978  0.5729  0.0289  0.0287  0.0196  0.0182 
 β1  0.0244  0.0173  0.0243  0.0159  0.6501  0.2820  0.0202  0.0220  0.0090  0.0088 
 λ2  0.2158  0.0922  0.1398  0.0921  0.9818  0.8499  0.0324  0.0324  0.0609  0.0602 
α2  –0.1210  0.0356  0.0264  0.0228  0.5673  0.2846  0.0190  0.0190  0.0108  0.0091 
 β2  0.4281  0.0702  0.2412  0.0694  0.9056  0.9121  0.0280  0.0280  0.0286  0.0278 

100 

 λ1  0.9775  0.2588  0.4883  0.2469  2.2617  1.4345  0.0684  0.0730  0.0623  0.0623 
 α1  –0.0238  0.0351  –0.0152  0.0261  0.7285  0.3001  0.0224  0.0220  0.0100  0.0094 
 β1  0.0108  0.0148  0.0214  0.0137  0.5242  0.1521  0.0165  0.0165  0.0048  0.0050 
 λ2  0.1804  0.0672  0.1409  0.0621  0.7303  0.9859  0.0238  0.0238  0.0393  0.0362 
 α2  –0.1516  0.0342  0.0116  0.0175  0.4153  0.1648  0.0135  0.0135  0.0060  0.0054 
 β2  0.4141  0.0281  0.1942  0.0623  0.7220  0.6827  0.0236  0.0236  0.0209  0.0219 

200 

 λ1  0.8811  0.0942  0.4531  0.0823  1.5975  1.0990  0.0501  0.0539  0.0413  0.0430 
 α1  –0.0573  0.0226  –0.0517  0.0231  0.5449  0.1441  0.0169  0.0180  0.0047  0.0043 
 β1  0.0114  0.0136  0.0192  0.0126  0.4545  0.1163  0.0146  0.0146  0.0040  0.0036 
 λ2  0.1528  0.0400  0.1142  0.0322  0.5065  0.6279  0.0155  0.0155  0.0218  0.0197 
 α2  –0.1760  0.0367  0.0072  0.0147  0.2966  0.0983  0.0096  0.0096  0.0033  0.0030 
 β2  0.3987  0.0175  0.1548  0.0141  0.5003  0.4308  0.0159  0.0159  0.0138  0.0137 

Table 3. Point and interval estimation method for parameters of the TIIHLW distribution 
under competing risks based on Type II censored sample: Case 2, r = 0.6 

 Case 2  point estimation  CI  Bootstrap 

r = 0.6  MLE  Bayes  MLE  Bayes  MLE  Bayes 

n   Bias  MES  Bias  MES  ACI  PCI  Bt  Bp  Bt  Bp 

50 

 λ1  2.9554  8.2977  1.5128  3.4096  4.9035  2.5846  0.1550  0.1484  0.1098  0.1083 
 α1  0.3695  0.1988  0.0958  0.0626  0.9786  0.8006  0.0298  0.0314  0.0256  0.0253 
 β1  0.4288  0.3704  0.8494  1.0190  1.6940  3.0633  0.0561  0.0529  0.0496  0.0495 
 λ2  1.9778  4.8114  1.1040  2.4102  3.7199  2.4599  0.1134  0.1134  0.1066  0.1065 
 α2  0.2117  0.0744  0.0480  0.0436  0.6749  0.4135  0.0204  0.0204  0.0132  0.0138 
 β2  0.5123  0.4569  0.9228  1.2882  1.7291  2.5758  0.0554  0.0554  0.0819  0.0780 

100 

 λ1  2.0997  6.0752  1.6733  3.8736  4.1051  2.0354  0.1274  0.1317  0.1028  0.1020 
 α1  0.3836  0.1859  0.1221  0.0619  0.7719  0.6770  0.0233  0.0251  0.0213  0.0209 
 β1  0.3052  0.1794  0.7030  0.7000  1.1521  1.0484  0.0375  0.0369  0.0338  0.0335 
 λ2  1.0971  2.3616  1.2381  2.5918  2.7067  2.3942  0.0838  0.0838  0.0744  0.0743 
 α2  0.2267  0.0670  0.0790  0.0441  0.4905  0.3030  0.0159  0.0159  0.0099  0.0096 
 β2  0.3717  0.2300  0.7142  0.7752  1.1888  1.1084  0.0365  0.0365  0.0352  0.0354 

200 

 λ1  0.9623  1.1667  1.8852  4.3521  3.9992  1.2967  0.1556  0.1624  0.1283  0.1358 
 α1  0.4901  0.2667  0.1702  0.0618  0.6384  0.6829  0.0238  0.0238  0.0269  0.0263 
 β1  0.0995  0.0486  0.5024  0.3620  0.7713  0.3019  0.0286  0.0313  0.0124  0.0116 
 λ2  0.8439  1.0528  1.3115  2.6003  2.9867  2.1487  0.1133  0.1133  0.0972  0.0970 
 α2  0.3123  0.1138  0.0957  0.0393  0.5004  0.3675  0.0196  0.0196  0.0144  0.0139 
 β2  0.1820  0.0803  0.5646  0.4807  0.8520  0.4434  0.0319  0.0319  0.0169  0.0165 
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Table 4. Point and interval estimation method for parameters of the TIIHLW distribution 
under competing risks based on Type II censored sample: Case 2, r = 0.9 

 Case 2  point estimation  CI  Bootstrap 
r = 0.9  MLE  Bayes  MLE  Bayes  MLE  Bayes 
n   Bias  MES  Bias  MES  ACI  PCI  Bt  Bp  Bt  Bp 

50 

 λ1  1.7677  3.5536  1.2829  2.6252  2.5683  2.0895  0.0770  0.0827  0.0743  0.0742 
 α1  0.0081  0.0203  –0.0871  0.0194  0.5579  0.1359  0.0177  0.0185  0.0043  0.0043 
 β1  –0.0087  0.1114  0.2240  0.1029  1.3087  0.8739  0.0427  0.0421  0.0293  0.0278 
 λ2  1.0865  1.4353  1.0092  1.1012  1.9796  1.0598  0.0636  0.0636  0.0521  0.0521 
 α2  –0.0491  0.0137  –0.0635  0.0135  0.4162  0.0807  0.0129  0.0129  0.0028  0.0026 
 β2  0.1626  0.1764  0.3572  0.1521  1.5190  1.3645  0.0480  0.0480  0.0445  0.0445 

100 

 λ1  1.2926  4.0898  1.3190  2.7160  2.0424  1.5037  0.0784  0.0763  0.0648  0.0646 
 α1  0.0433  0.0168  –0.0828  0.0143  0.4797  0.1577  0.0150  0.0153  0.0051  0.0046 
 β1  –0.1983  0.0946  0.0621  0.0982  0.9220  0.4224  0.0302  0.0286  0.0143  0.0128 
 λ2  1.1049  1.3891  1.0010  1.3597  1.6086  0.9148  0.0512  0.0512  0.0421  0.0420 
 α2  –0.0358  0.0081  –0.0594  0.0078  0.3230  0.0746  0.0103  0.0103  0.0027  0.0024 
 β2  –0.0357  0.0631  0.1424  0.0623  0.9748  0.3328  0.0315  0.0315  0.0107  0.0104 

200 

 λ1  1.0215  4.5930  1.3608  2.6291  1.7915  0.9716  0.0914  0.0845  0.0748  0.0752 
 α1  0.0632  0.0194  –0.0707  0.0135  0.4861  0.1619  0.0154  0.0151  0.0051  0.0052 
 β1  –0.3270  0.1414  –0.0973  0.1205  0.7278  0.4839  0.0237  0.0228  0.0147  0.0151 
 λ2  0.8151  1.5861  0.9968  1.7814  1.0059  0.8220  0.0616  0.0616  0.0527  0.0525 
 α2  –0.0245  0.0099  –0.0581  0.0083  0.3776  0.0960  0.0113  0.0113  0.0031  0.0029 
 β2  –0.1622  0.0662  –0.0039  0.0514  0.7829  0.3112  0.0264  0.0264  0.0098  0.0096 

Application of electrical appliances

A real-life data set is examined in [34, p. 441]. The 36 small electronic components 
were put through an automatic life test and failures are divided to 18 different categories. How-
ever, we found that only seven modes were represented among the 33 identified failures, and 
that only modes 6-9 occurred more than twice. Failure mode 9 is strongly valued. As a result, 
the data set consists of two causes of failure δ = 1 (failure mode 9), δ = 2 (all other failure 
modes), and δ = 0 (failure time is censored). As a result, the following data illustrates the failure 
times in order and, if available, the cause of each failure. The data set was shown in tab. 5.

Table 5. Data set gives the times from 36 small electrical units under an automatic life test
 (11, 2)  (35, 2)  (49, 2)  (170, 2)  (329, 2)  (381, 2)
(708, 2)  (958, 2)  (1062, 2)  (1167, 1)  (1594, 2)  (1925, 1)
(1990, 1)  (2223, 1)  (2327, 2)  (2400, 1)  (2451, 2)  (2471, 1)
(2551, 1)  (2565, 0)  (2568, 1)  (2694, 1)  (2702, 2)  (2761, 2)
(2831, 2)  (3034, 1)  (3059, 2)  (3112, 1)  (3214, 1)  (3478, 1)
(3504, 1)  (4329, 1)  (6367, 0)  (6976, 1)  (7846, 1)  (13403, 0)

Table 6 provides the maximum likelihood and Bayes point estimates of the four model 
parameters, based on the model mentioned in this paper, in order to assess the data. We used the 
R programming language in all calculations. 
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Table 6. Estimates the parameters of the TIIHLW distribution under 
competing risks by using MLE and Bayesian estimation method

  MLE  Bayes 
 Coef  St.E  LCI  U.CI  Coef  St.E  LCI  U.CI 

λ1  212.9505  4.6276  203.8803  222.0207  213.0388  4.4807 204.2565  221.8211 
α1  0.3678  0.1291  0.1148  0.6207  0.3764  0.0667  0.2457  0.5070 
β1  0.3246  0.0446  0.2370  0.4121  0.3243  0.0226  0.2799  0.3685 
λ2  1.0962  0.9292  -0.7250  2.9175  0.9273  0.2479  1.4131  0.4414 
α2  0.0031  0.0151  -0.0265  0.0327  0.0033  0.0021  0.0073  –0.0008 
 β2  0.5857  0.4606  –0.3170  1.4884  0.5733  0.1293  0.8267  0.3199 

The log-likelihood (ll) values are computed for the TIIHLW distribution under the 
competing risks model in tab. 7. As a result, consistent AIC (CAIC), the Akaike information 
criterion (AIC), Bayesian information criterion (BIC) goodness-of-fit measures and Han-
nan-Quinn information criterion (HQIC) are examined. 

Table 7. The values of log-likelihood, AIC, BIC, CAIC, and HQIC 
for the TIIHLW distribution under competing risks

 MLE  ll  AIC  BIC  HQIC  CAIC 
Measure  –308.89  629.781  639.282  633.097  632.677 

 The trace plots and the marginal posterior pdf of parameters of the TIIHLW proba-
bility under competing risks by using Bayesian estimation are obtained in figs. 1 and 2. The 
auto-correlation plots demonstrate that the lag decreases over time, and the trace plots show a 
clear mix of the sampled drawings, indicating that they become practically independent with 
time and are drawn from the real posterior distribution, fig. 3. Without obtaining these marginal 
posterior relations. Random drawings from the joint posterior distribution θ were used to obtain 
random plots of risks πj, j = 1, 2. Further the Bayes estimates πj were calculated and posterior 
density functions were generated using those graphics. Figure 4 shows the posterior density for 
the MCMC results for all parameters, indicating a symmetric normal distribution identical to 
the proposed distribution. 

Table 8 represents the estimation of relative risks and survival at different times for 
each method. Figure 5 shows the convergence diagrams for random draws of πj. In the fig. 6, 
different θ-values are used to generate random graphs for the sub-survivors and overall survi-
vor. Confidence intervals for Bayesian estimations at 95% were constructed for these functions 
at different times. In fig. 7, the results of estimating MCMC for the posterior distribution of each 
of π1 and π2 were presented. The results showed that they have a symmetric normal distribution.
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Figure 1. The trace plots, the marginal posterior pdf and convergence of the parameters λ1, α2, and β1 

 
Figure 2. The trace plots and the marginal posterior pdf of the parameters λ2, ω2, and β2 

 
Figure 3. The autocorrelation of MCMC results
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Figure 4. The posterior density of MCMC results 

Figure 5. The trace plots, marginal posterior and convergence of the relative risks of MCMC results

 
Figure 6. Bayes point and interval estimates of the sub-survivor functions and  
the overall survivor function; Bayes estimate of (a) S1(t), (b) S2(t), and (c) S(t)



Tolba, A. H., et al.: Bayesian and Non-Bayesian Estimation Methods to ... 
THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 1, pp. S285-S302	 S301

Table 8. Estimated relative risks and survival
  π1  π2  S1(11)  S2(11)  S1(11)  S1(2511)  S2(2511)  S(2511)

MLE  0.5476  0.4524  1  0.9839  0.9839  0.7641  0.6289  0.4805 
Bayesian  0.5480  0.4520  1  0.9839  0.9839  0.7639  0.6293  0.4807 

  
Figure 7. The posterior density for relative risks of MCMC results

 Conclusion

Using k, k ≥ 2, independent censoring data, we discussed competing risk models in this 
paper. Using the general likelihood equation of the model, the likelihood function was calculated 
for cases where the risks follow TIIHLW sub-distributions with scale parameters and unknown 
form. The Bayes estimates and the maximum likelihood of the model parameter estimates are 
described. The gamma prior distribution in Bayes analysis to get random drawing information is 
used to calculate the joint posterior-distribution function of all unknown parameters with known 
hyperparameters and the MCMC. For all unknown parameters, credible intervals, asymptotic 
confidence intervals, and bootstrap confidence intervals are provided. Sub-survivor, overall survi-
vor function estimations and individual risk, were also included in the reliability analysis.
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