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In this paper a free convection unsteady Brinkmann hybrid nanofluids including 
two or more nanoadditives to the host liquid is investigated. The physical flow 
phenomena are illustrated using PDE and thermophysical nanoparticle proper-
ties, and this paper addresses the Brinkmann fractional fluid along with chemical 
reaction and heat generation with ramped conditions over an inclined vertical 
plate. The heat and molecular fluxes are generalized using the novel fractional 
derivative. The present flow model are solved semi-analytically using the Laplace 
transform. The effects of different parameters specially fractional parameter are 
deliberated and plotted graphically. The acquired results reveal that fractional 
parameters have dual behavior in velocity profiles and temperature profile. Ve-
locity and temperature are also compared to previous studies. Compared to the 
other fractional derivatives results, field variables and proposed hybrid fractional 
derivatives showed a more decaying trend.
Key words: Brinkmann fluid, hybrid nanofluid, heat generation,  

chemical reaction, CPC fractional derivative

Introduction

Recently, many researchers have been engrossed to study nanotechnology due to its 
wide applications in industries. The addition of two or more distinct nanoadditives to the base 
fluid causes the formation of hybrid nanofluid [1, 2]. Ali et al. [3] discussed the Maxwell hybrid 
nanofluid with pressure gradient in a vertical channel. Khalid et al. [4] solved a problem related 
to nanofluid with ramped conditions. Baleanu et al. [5] described the different types of proper-
ties of fractional-calculus operators. Using a Cattaneo constitutive equation along with a Ca-
puto-Fabrizio time-fractional derivative, Hristov [6] started working on transient heat. Baleanu 
et al. [7] described a fractional operator that combines proportional Caputo and solved various 
types of examples using CPC derivatives. Asjad et al. [8] investigated the flow of a Maxwell 
fluid usually contains clay nanoparticles along with constant proportional Caputo types frac-
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tional derivatives. Ahmad et al. [9] used novel fractional derivatives (CPC) to obtain analytical 
solutions of the Casson nanofluid across a vertical plate. Chu et al. [10] used Fourier’s and 
Fick’s laws to present a model of the differential-type fluid by fractionalized thermal and mass 
fluxes with CPC derivative.

The aim of this paper to show the analysis of hybrid nanofluid by using the CPC 
fractional derivative to explore the Brinkmann fluid in an inclined plate along with chemi-
cal reaction and heat source using generalized thermal and molecular fluxes. The solution of 
dimensionless differential equations with boundary conditions is semi-analytically solved by 
utilizing the Laplace transform. The temperature, concentration and velocity distribution results 
are attained and graphically discussed.

Formulation of problem

Let us consider the hybrid nanofluid-flow in an inclined vertical plate. The plates are 
taken along the x⋅-axis and the z⋅-axis is chosen perpendicular to it. When t ⋅ < 0, the plates as 
well as fluid are at rest with ambient temperature T ⋅∞. When 0 < t ⋅ < t ⋅0 the plate’s temperature 
is raised or lowered to T ⋅∞ + (T ⋅W – T ⋅∞)t /t ⋅0. After t ⋅ > 0, the plate’s temperature rises or lowers 
to T ⋅W. At this time, the fluid initiate its motion in the x-direction because of the temperature 
gradient. The value of the magnetic field is insignificant due to very low Reynolds number.

According to the Boussinesq’s approximation, the governing equations for an un-
steady Brinkmann hybrid nanofluid-flow in an inclined plate are given [11, 12]:
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 The generalized Fourier’s Law states [10, 13]:
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 Diffusion equation: 
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 The generalized Fick’s Law states [10]:
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The initial as well as boundary conditions:
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The non-dimensional form of the flow variables:
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Using dimensionaless variables of eq. (9) in the aforementioned equations, we obtain:
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Thermophysical properties of hybrid nanofluid

Thermophysical properties be defined in [11]: 
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where µhnf, (ρCP)hnf, ρhnf, κhnf, σhnf, and ϕ are the effective dynamic viscosity, heat capacitance, 
effective density, effective thermal conductivity, effective electrical conductivity, and volume 
fraction of the hybrid nanoparticles, respectively. The thermophysical properties of the hybrid 
nanomaterials are defined [8] in tab. 1. 

Table 1. Thermophysical properties of hybrid nanofluids

 ρ [kgm–3] K [Wm–1K–1] σ [sm–1] β ⋅ 10 –5 [K–1] CP [Jkg–1K–1]

H2O(f) 997.1 0.0613 5.5 ⋅ 10–6 21 4179

Al2O3(s1) 3970 40 35 ⋅ 106 0.85 765

Cu(s2) 8933 401 59.6 ⋅ 106 1.67 385

CuO(s2) 6320 76.5 6.9 ⋅ 10–2 1.80 531.8

Ag(s2) 10500 429 6.30 ⋅ 107 1.80 235
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Generalization

Generalization of thermal diffusion

The fractional form of Fourier’s law [10, 13] is from eq. (12) and used in eq. (11), 
we get:
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where CPCDγ
t f(x, t) indicates the CPC fractional derivative of f(x, t) [7]:
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Generalization of molecular diffusion

The fractional form of Fick’s Law [10] is used from eq. (14) into eq. (13), we 
obtain:
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Solution of problem

The equations for energy, diffusion and momentum (10), (19), and (21) via the tech-
nique of Laplace transform can be solved numerically by using Stehfest’s as well as Tzou’s 
algorithms [14, 15] in the case of a complex expression. 

Solution of temperature

The eq. (19) is solved the subject to the conditions stated in eqs. (15)-(17) by the use 
of Laplace transform method for temperature:
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Solution of concentration

The eq. (21) is solved using the conditions given in eqs. (15)-(17) via Laplace trans-
form method for concentration species:
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Solution of velocity

The solution of the velocity field of eq. (10) is subject to initial and boundary condi-
tions (15-17), by using Laplace transform, we get:
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Result and iscussion

This paper investigates hybrid nanoparticles in Brinkmann fluid along with CPC frac-
tional derivative. The semi-analytical results of velocity, concentration, and temperature are ob-
tained. Furthermore, some graphs are positioned to represent the physical effect of the involved 
parameters, particularly the influence of hybrid nanoparticles and fractional parameters.

The graphical behavior of fractional parameter α = γ on v(x, t) and T(x, t) are illustrat-
ed in figs. 1-4. The figures show the effect of a fractional parameter and reveal the dual nature of 
the velocity and temperature towards the fractional parameter α = γ for longer and shorter times. 
For a more extended period of time, a velocity and temperature distribution showed an upward 
trend, and thus the boundary-layers grow with the increase in the values of α = γ. Its behavior 
is the opposite for a smaller times. 

Figure 1. Temperature profile T(x, y) for 
fractional parameters α = γ for small time  
at Q = 0.3 and Pr = 6.2

Figure 2. Temperature profile T(x, y) for 
fractional parameters α = γ for large time  
at Q = 0.3 and Pr = 6.2
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Figure 3. Velocity profile v(x, y) for fractional 
parameters α = γ for small time at Gr = 9,  
Q = 0.3, Gm = 12, M = 0.5, Pr = 6.2, and  
R = 1.5

Figure 4. Velocity profile v(x, y) for fractional 
parameters α = γ for large time at  
Gr = 9, Q = 0.3, Gm = 12, M = 0.5, Pr = 6.2,  
and R = 1.5

The impact of magnetic field on fluid velocity distribution is depicted in fig. 5 for 
taken fixed parameters and various kinds of hybrid nanofluids. The figure shows that when 
magnetic parameters increase, the kinetic energy of the fluids decreases. The changing behavior 
of nanoparticle of volume fraction on fluid velocity distribution is presented in fig. 6. It is seen 
that increasing the volume fraction of hybrid nanoparticles speed up the viscous properties for 
the nanofluid as it reduces the fluid motion. Figure 8 compares the velocity profile between the 
CPC fractional derivative and viscous flow [11]. Because the velocity used in [11] refers to a 
viscous fluid, whereas the velocity in this study refers to a Brinkman fluid. 

Figure 5. Velocity profile v(x, t) for different 
value of M at Gr = 9, R = 1.5, Gm = 12,  
Pr = 6.2, and Q = 0.3

Figure 6. Velocity profile v(x, t) for different 
value of volume fraction ϕ2 at Gr = 9,  
Q = 0.3, Gm = 12, Pr = 6.2, and R = 1.5

Because Brinkman fluids are thicker than viscous fluids. The temperature and velocity 
comparisons in figs. 7 and 9 demonstrate the current work with the Caputo Fabrizio fractional 
derivative being used by Ul Haq et al. [11]. When βm = α1 = Q0 = 0 in [11], velocity and tem-
perature with CPC decrease faster (more decaying nature) than velocity and temperature using 
Caputo Fabrizio fractional derivative, respectively. Figures 10 and 11 describe the authenticity 
of inversion algorithms for temperature as well as concentration distributions, respectively. The 
velocity distributions overlap that shows the authenticity of inversion algorithms as depicted 
in fig. 12.



Nisa, Z. U., et al.: A Novel Fractional Study on Free Convection Flow of Brinkmann ... 
S236	 THERMAL SCIENCE: Year 2022, Vol. 26, Special Issue 1, pp. S229-S237

Figure 7. Comparison of velocity profiles 
between CPC and Caputo Fabrizio 
fractional derivatives for α = 0.5 and  
βm = α1 = 0 

Figure 8. Comparison of velocity profiles  
of fractional fluid with viscous fluid [11]  
for βm = θ = Gm = 0  

Figure 9. Comparison of temperature 
profiles between CPC and Caputpo Fabrizio 
fractional derivative for α = 0.5 and Q0 = 0

Figure 10. Concentration obtain  
by Stehfest's and Tzou's algorithms

Figure 11. Temperature obtain  
by Stehfest's and Tzou's algorithms

Figure 12. Velocity obtain by Stehfest's  
and Tzou's algorithms

Conclusions

A hybrid fractional derivative is used in model of Brinkmann nanofluid over an in-
clined plate. The velocity, concentration, and temperature fields are determined by solving this 
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flow model semi-analytically. To demonstrate the influencing parameters, multiple graphs of 
optimizing fields are plotted. The following are outcomes of this flow model are as follows.

yy The use of hybrid nanofluids produces good results than nanofluid having single nanoparti-
cle. It is noted that the highest value is obtained for Ag-Al2O3-water hybrid nanofluids.

yy Due to fractional parameters, fluid velocity and energy have dual behavior. Both are increas-
es for a long time by raising the value of the fractional parameter α = γ but behaves in the 
opposite way for a shorter time.

yy By applying the ramped conditions on inclined plate, is an efficient method to inaugurate 
the preferable flow control.
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