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In this study, we obtained some exact solutions of the coupled non-linear Helm-
holtz equation through the sub-equation method. The solutions were hyperbolic
and trigonometric. We observed through MATHEMATICA 11.2 that these solu-
tions provided the equations, and we presented graphs of some solutions in the
last section.

Key words: coupled non-linear Helmholtz equation, sub-equation method,
exact solutions

Introduction

The PDE equations represent the relationships between several partial derivatives of
a multivariable function. They are often used in mathematics-based sciences such as physics
and engineering. They establish the foundation of modern scientific logic of several concepts
such as sound, heat, diffusion, electrostatics, electrodynamics, hydrodynamics, elasticity, and
guantum mechanics. We focused on non-linear PDE in this study.

Several methods have been developed in recent years and is still being developed to
provide solutions to such equations. Some of these methods are presented in [1-17]. In most
of these methods, non-linear PDE are solved through transforming them into ODE using a
transformation. In this study, we obtained some exact solutions of the coupled non-linear
Helmholtz equation [13] through the sub-equation method. This method was developed by
Zayed et al., [1].

Application
Let us consider the coupled non-linear Helmholtz equation [13]:

. 1 2 2
iU, +aUy +=U, +5 |u[ u+s,|v] u=0
? ®
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If the following transformation is applied to eq. (1):
u(xt)=e“U (&), v(xt)=eN (&) (2)
where &=(mx—mm,t), 6=(-mx+m,t+x).
It transforms into the following ODE. The real and imaginary parts of the equation
are separated as:
(-mZ —2amim; JU"+(m +2m, + 2am; U +(-25U° - 25,UV*) =0
(2mm, +2m;m, +4am,m;m,)U’ =0
(=m3 —2omZm} )V "+ (mf +2m, + 2am; )V +(-25U%V -25V°) =0

(2mm, +2m;m, +4am,m;m, V' =0

®)

Here, if we apply the transformation of V = SU to eq. (3), we obtain the following
form of the equation:

YU +P,U +PU =0 4)
i(2mm; +2m;m, +4am,m;m,)U’' =0 (5)
We obtain,
me

in eq. (5). In addition, ¥; = (m{ +2m, +2am;), ¥, = (-m —2amim;), ¥, =(-2s,-2s,4°). In
eq. (4), if U and U® are balanced, we get n = 2 and m = 1. According to the sub-equation
method [1], the solution function is as follows:

()= oty + Q&)+, (&) ©)
B, + BlQ(g)
o, a1, az, Bg ve By obtained in the previous solution function are constants. If solution (6) are
substituted in eq. (4), the system of algebraic equations below is obtained:
BZa,¥, — prB,B,a, ¥, +2p°B’a,¥, + prBia,¥, —
—2p°B,Ba,¥, +2p° B, ¥, +a¥, =0
2B,B,a, ¥, + Bla, ¥, — 2pqB,B,a, ¥, — r*B,B,a, ¥, + 3prB e, ¥, +
+2paBl ¥, + r*Bla,¥, —3prB,B,a, ¥, + 6 prBia, ¥, + 3l ¥, =0
Ba, ¥, +2B,B,a,¥, + Bl a, ¥, —3qrB,B,a, ¥, + 2paB a, ¥, + r’ Bl a, ¥, +
+3qrBZe, ¥, — 2 pgB,B,o, ¥, — r’B,B,o, ¥, +8paB. a, ¥, + 4r’* Bl a, ¥, +
+3prB,B,a, ¥, +3a,a¥, +3aia,¥, =0
Bfal‘l’l +2B,B,a, ¥, - 2q° B,B.a, ¥, + qufaOS”z +2q° Bozozl‘l’2 -qrB,B,a,%?, +
+10qrB. o, ¥, + 6 pqB, B, ¥, + 3r’B,B,a, ¥, + prBla, ¥, + &’'¥, + 6a, 0,0, ¥, =0
Bla,¥, +60°Bla, ¥, +9qrB,B,a, ¥, + 2paBia, ¥, + r’Bla, ¥, +3a’a, ¥, +3a,a’¥, =0
6q°B,B,a,¥, +3qrB a, ¥, +3a,a¥, =0, 29°Ba,¥, + . ¥, =0
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Through the solution of this system, the following coefficients are found:

2%, +1°¥, an i, ¥,
YW, 0, p=—2L "2 rg %0, L 2N 3 7
q 2+ 3 * p 4qyjz al * aZ Bl \/—q\/— ( )

If the coefficients found in (7) are substituted in (6), and then the obtained solutions
are replaced in solution (2), the following solutions of eq. (1) is obtained:

u, (x.t)
—ZCOSh(\/_f\/iin —ZSlnh[\/_f\/ijAz\/i
. \/4A1T AN, u ®)

[ZSinh(ﬁf\/f}Aﬂq+Zcosh(\/§§\/§]Ale—uTZJ\/T_S
—2005h(«/_§ JAi le 25|nh[«/_§ ]AZ =Ly
I

J4Alsrf e ,uz , ©)

(2sinh(ﬁ§J§J AY, +2cosh [ﬁgﬁ] AY, —ywz}/s?g

In solutions (8) and (9), if we assume that A; = 0, A, = 0, u = 0, we obtain the fol-
lowing solutions of the equation:

el (T e

U () (10)
i le 5Ul 5”1 Aizyjl i(o
el

v, (Xx,t)=
A,

Again, if we assume in solutions (8) and (9) that A; = 0, A, = 0, u =0, we obtain dif-
ferent solutions of the equation as follows:

_isech[ﬁg\/fﬂ[sinh[ﬁg\/fﬂ%\/z_ /_A;Z/l}/y/_zei(a)
N

Uy (x,t)=

(12)
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e

) e

vy (x,t)= (13)
in the solutions above, A =(4pg—r2)<0, o, =(A2 - A?), (A%cy + ) >0:
U, (xt)=
Tl
_2005[«/55 —TZ]A T+2$|n£«/_§ —JAQ ? |
v\, e'”
N AR AN 2 (14)
- P, y, oy
) . [¥ [¥
(Zsm(ﬁg —TlJAiY’ﬁZcos[\/fé —y}]AZTl—y‘PZJ\/E
V4(X’t):
K2 T ANEZ
—2005[\/55 —%in —%+25|n(«/§§ —TZJAQ —?2+
A
N AR WG 2 (15)
TZ TZ Y,l

[23in£«/§§ —?J/wq +2cos[J§§ —;'jl]Azyq —yavz}/i

In solutions (14) and (15), if we consider that A; = 0, A, # 0, 1 = 0, the following so-
lutions of the equation are obtained:

S
ol o P

Again in solutions (14) and (15), if A; =0, A, # 0, u = 0, we obtain the following
different solutions of the equation:
Zy/lj ,_5”2 ei(&')
2

ise{ﬁéﬁj{sin(ﬁg\/—z]%\/z+ - A;I
A

U (x,t) = (16)

Vs (x,t) = 17)

(18)

Us (X,t)=—
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(19)

i B LR e ¥ /_ﬁ /_Azzy’l i(0)
" ﬂlsec(ﬁé sz[sm[«/fg Y’z]Az ¥’2+ v J\/Ip_ze
v, (x,t)=—

6 AT,
in the previous solutions:
&= (mX mm,t), 0 =(-mx+mt+x), A=(4pg—r?)>0
(A1 +A2) (42 O, —H )>0,Y’1=(m1 +2m2+2am22)
¥, =(-m —2amim; ), ¥, = (-2, - 25,°)
Graphics

In this section, graphs of some solutions found are presented. In drawing 3-D graph-
ic, 2-D graphic, and contour graphic, the range of -3 < x < 3, -3 <t < 3 for solution (8) and
—5<x<5,-5<t<5for Solution (10) and (14) were used.
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Figure 1. The 3-D surfaces of solution (8) for:

m1=—3, m2=1, m3=1,51=—2,52=1,A1=3,A2=1, a=2,ﬂ=l

The 2-D surfaces of solution (8) for:

m1=—3, m2=1, m3=1,51=—2,52=1,A1=3,A2=1, a=2,p=2,ﬂ=1,t=1

The Contour surfaces of solution (8) for:

m, :—3.m7:1,mfz:1.51 :—2,87:1.A1:3.A7:1.a:2.u:2.B:1
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Figure 2. The 3-D surfaces of solution (10) for:
m=-3,my=1m3=1,5,=-2,5=1,A;1=1, a=2, =1
The 2-D surfaces of solution (10) for:
m=-3,my=1m3=1,5,=-2,%=1, =2, u=2,=1,t=1
The Contour surfaces of solution (10) for:
m=-3,m=1mg=15s=-2,5=1, =2, =1
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Figure 3. The 3-D surfaces of solution (14) for:
m1:3,m2:1,m3:1,81:2,sz:l,A1:3,A2:1,aZZ,ﬂ:l,ﬂZZ
The 2-D surfaces of solution (14) for:
m1:3,m2:1,m3:1,51:2,Sz:1,A1:3,A2:1,a:2,ﬂ:2,ﬂ:1,t:1
The Contour surfaces of solution (14) for:
m1:3,m2:1,m3:1,51:2,Sz:1,A1:3,A2:1,a:2,ﬂ:1,ﬂ:2

Conclusion

Consequently, we obtained some exact solutions of the coupled nonlinear Helmholtz
equation through the sub-equation method. The obtained solutions were hyperbolic and trigo-
nometric. We observed using MATHEMATICA 11.2 that the solutions provided the equa-
tions. In addition, we presented the graphics performance of some of the obtained solutions.
This method has recently been used to obtain exact solutions of nonlinear partial differential
equations.
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