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The advancement of nanofluid technology has become an essential tool for inves-
tigating thermal conductivity enhancement, which is highly valuable for industri-
al and engineering applications in many fields including mathematics, physics, 
engineering, and materials science. This analysis focuses on 3-D boundary-layer 
flow on nanofluid over a rotating disk by incorporating chemical reaction and 
thermal radiations effects. One aim of this article is to analyze the energy and 
mass transport rates for nanofluids. In this study, the Brownian motion and ther-
mophoretic impacts are considered. The governing flow equations are converted 
to ODE via suitable similarity transformations. The resulting equations were 
solved via well know technique Keller box method. This analysis revealed that the 
azimuthal and axial velocities show an inverse pattern against the various values 
of index factor, n, although the radial velocity has the highest value and decreas-
es significantly. The behavior of the von Karman flow is also recovered for set-
ting the index factor (n = 1). Moreover, it is found that the temperature of nano 
liquid increases by increasing the Brownian motion and thermophoretic factors. 

Key words: power law rotating disk, chemical reaction, nanofluid, 
Brownian motion, thermal radiations 

Introduction  

In the last few decades, investigation of flow over a rotating disk has become an ac-

tive area of research due to its potential to provide considerable progress in many industrial 

and engineering applications, such as gadgets, rotational viscometers, advanced plane design, 

and chemical engineering. Flow for a rotating disk was addressed first by von Karman [1]. 

This kind of flow includes the term radial pressure gradient at the outer layer of the disk 

which settles the centrifugal powers. Thus, the liquid over the surface twists outwards and it is 

being exchanged by an axial flow in the direction of the disk. Recently, we have seen explo-

sive growth of activities investigating the flow over a rotating disk in-corporating the exami-

nation of rotational flow all through the funeral-shaped diffuser, rotation of the shrouded disk, 

and radiating siphons. The energy transportation phenom-enon has been discussed by the 
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following researchers [2, 3]. Ramzan et al. [4] investigated rotating disk behavior for nanoflu-

id flow via bvp4c MATLAB program. They considered variable viscosity along with variable 

thermal conductivity. The investigation of nanoliq-uid for power law stretchable disk was 

done by Chen et al. [5]. Ramzan et al. [6] reported the numerical analysis of rotating disks for 

nanoliquid flow by incorporating the chemical species. 

Exploring the thermal conductivity of traditional fluids has become a crucial part of 

energy exchange investigation. Recently, nanoliquids have turned into the focal point of con-

sideration due to their superb heat exchange performance. Choi and Eastman [7] dis-covered 

nanofluid in the late 1990’s to improve heat conductivity by combining a base flu-id such as 

water, ethylene glycol, or oil. The existence of the nanoparticles in the fluid can improve the 

rate of change of the heat and working fluid properties due to their spe-cial properties. 

Buongiorno [8] investigated that the thermal conductivity of nanoliquid jumped due to the 

involvement of Brownian movement and thermophoretic phenomenon. Recently, different 

researchers studied nanoliquids by considering various geometries for reference see [9-15]. 

Thermal radiations have gained the attention of active researchers because of its key 

role in the heat transfer phenomenon which is very important in industry and engineering 

field. In order to design energy conversion systems the impacts of thermal radiations on the 

flow phenomenon and energy transportation are very significant [16]. Furthermore, with large 

variations in temperature thermal radiations are not suitable for construction of thermal appa-

ratuses. Ghadikolaei et al [17] explored the imapacts of thermal radiations for a stretchy sur-

face by considering nanoliquid. In addition, the investigation of nanoliquid for a stretchy sur-

face with the effects of thermal radiations was done by Sheikholeslami et al. [18]. 

Chemical reactions can be characterized into different classifications like single or 

multi-stage reactions, catalyst, and non-catalyst reactions, heterogeneous, and homogenous 

reactions, etc. Mostly, the chemical reaction occurs through a synthetic interaction that com-

prises various phases called primary stages, which make a multifaceted chemical reaction. To 

diminish the difficulty of complex chemical reactions, we design a mathematical model. 

Bhandari [19] studied the effect of chemical reactions on the flow of micropolar nanofliquid 

via the finite element technique. Khan et al. [20] employed the homotopy method to investi-

gate the impact of chemical reactions on hybrid nanoliquid flow. Moreover, the energy spe-

cies transport rate of Casson-type nanoliquid by incorporating chemical impacts was investi-

gated by Panigrahi et al. [21]. Anjum et al. [22] discussed the chemical reaction effects on 

nanoliquid flow by the utilization of double stratification. Further, Mondal et al. [23] dis-

cussed the chemical reaction influence on nanoliquid flow for a stretchable cylinder. In addi-

tion, Reddy et al. [24] considered Eyring-Powell nanoliquid to investigate the chemical reac-

tion effects on a stretchable cylinder numerically. In recent years, different researchers uti-

lized the chemical reaction impacts for different geometries [25-36]. 

All the aforementioned studies explored a rotating disk and nanofluid flow in vari-

ous circumstances. However, there has been no prior research on the chemical reaction and 

thermal radiations effects on 3-D viscous nanofluid flow over a rotating stretchy disk. This 

paper aims to address that gap by investigating the influence of the physical factors involved 

on modeled flow. Brownian motion, and thermophoresis are all used in this innovative study. 

Using similarity transformations, the governing problems are turned into a series of ODE with 

proper boundary conditions, which are then numerically resolved using the Keller box ap-

proach. Graphs are used to quantitatively analyze and display the impacts of various physical 

factors on the contours of temperature, velocity, and concentration.  
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Mathematical formulation 

This section analyzes the flow behavior of considering 3-D viscous nanofluid flow 

with azimuthal velocity over a rotating disk. The disk is rotating in an azimuthal direction 

with power-law velocity. The Brownian movement and thermophoretic effects are consid-

ered in this steady and incompressible flow. In addition, the chemical reaction and thermal 

radiations impacts are utilized. Under these effects and assumptions, the governing equations 

for the current study are given as: 
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The boundary conditions for the current flow phenomenon are: 
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Considering similarity transformations: 
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For Rosseland approximation see reference [37]. With the utilization of similarity 

transformations eq. (1) identically satisfied, whereas eqs. (3), (5), and (6) are converted into: 
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 where the physical parameters are defined as: 
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Now, eq. (2) converted into: 
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Equation (13) contains Pr (pressure gradient), thus by eq (4) we get: 
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From eq. (14), noted that order of pressure is O(r
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). We neglect the pressure gradi-

ent term by considering axis of spinning of the disk and the radial position far from eachother 

in eq. (13). Thus eq. (13) reduces in the form: 
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The physical quantities of our interest including skin friction (radial and azimuthal), 

local Nusselt number and Sherwood number are: 
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where  stands for liquid viscosity. 

For m = 0 our problem reduces to Von Karman flow behavior for spinning disk. 

Thus, we introduced a = . against gyration rate of disk. 
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Thus, we defined new value of c in eq (9), denoted by: 
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Thus, the converted eqs. (10)-(12) and (15) take the form: 
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The converted boundary conditions becomes: 
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Results and discussion 

This section presents numerical simulations of 3-D viscous nanoliquid flow for a 

spinning disk. The energy equation takes into account the impacts of heat generation or ab-

sorption, whereas the mass transport equation includes chemical reaction. The supported simi-

larity transformation is used to translate differential equations, which are then numerically 

solved using the Keller box technique.  

The ODE (17)-(20) are solved numerically by utilizing eq. (21) via Keller box tech-

nique, for detail of method see [39]. The results for velocity, temperature and concentration 

are drawn, in which dotted lines show von Karman flow while remaining show current behav-

ior of the flow. For the physics of the current problem, we assign suitable values to the in-

volved factors including Brownian motion factor, Nb, thermophoretic factor, Nt, Lewis num-

ber, Prandtl number, and index factor, n. Figure 1 presents the radial in rectangle fig. 1(a), 

azimuthal in rectangle fig. 1(b) as well as axial velocity in rectangle fig. 1(c) behavior against 

index factor, n. The pattern of azimuthal and axial velocities show inverse relation against the 

various values of n, while radial velocity presents the maximum value which decrease mar-

ginally. Additionally, for n = 1 we recover the behavior of von Karman flow (dashed lines), 

whereas against n = 10,15,20 solid lines shows current flow. Physically, the increment in 

index factor, n, boost the nonlinearity as a result the resistive force dimishes to the incoming 

flow behavior thus the azimuthal, radial and axial velocities slow down. 

Figure 2 presents () shows direct correspondence with the impact of radiations. 

Physically, due to the increment in radiations factor more energy transferred to the liquid. 

Therefore by the improvement of radiations impacts the temperature of the liquid increases in 

return profile upsurges. The recovered results match with the temperature profile pattern of 

Shaheen et al. [40]. Figure 3 exhibits the behavior of chemical reaction effects on () 

(concentration profile). It is cleared from fig. 3 the concentration distribution portrays in-

verse relation with chemical reaction effects which is similar results as recovered by Salleh 

et al. [41]. 
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Figure 4 presents the behavior of () and () against n. Figure 4 clearly exhibits 

the temperature and concentration profile decreases with the increment in index factor, Pr. 

Physically the resistive force reduces due to the index factor which accelerates the flow in 

return solutal and thermal boundary-layer thickness diminishes. Figure 5 portrays the behav-

ior of () against Brownian motion factor, Nb, thermophoretic factor, Nt, and Prandtle num-

ber, which shows that the temperature of nano liquid increases by strengthen Nb and Nt. Phys-

ically by strengthen the thermophoretic factor the liquid particles pulls towards the cooler 

zone from the hot zone, while by strengthen the Brownian motion factor the kintetic energy of 

the particles enhance as a result the thermal boundary-layer thickness increases which present 

in figs. 5(a) and 5(b). 

Figure 1. Impact of (n =10, 15, 20, 25 solid 
lines); presents radial (a), azimuthal (b), and 
axial (c) velocity distribution while (n =1 for 

von Karman flow presents via dashed lines) 

Figure 2. Impact of 𝑵 on ()   Figure 3. Impact of R on () 
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Conclusions  

This study presented numerical simulation of thermal transport and mass exchange 

rate by applying Keller box technique. By considering chemical reaction and thermal radia-

tions along with Brownian motion, this study seeks to further and enhance the examination of 

the nanofluid flow over a rotating disk. In this study, we recovered the following outcomes. 

 The () (Concentration profile) portrays an inverse behavior against chemical reac-

tion factor. 

 The n (Power law index) shows an inverse correspondence against velocity, tempera-

ture, and concentration distribution. 

 Mass transport look more efficient as compared to energy transport for Von Karman 

flow. 

 The () boosts as the thermal radiations factor increases. 
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