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Generally, the analysis of a lifetime data to quantify the life characteristics of the 
product done under normal conditions. The engineers for some reasons may be 
needed to obtain the reliability results more quickly then, accelerated life tests are 
applied. In this paper, we adopted partially step-stress accelerated life tests model 
of product has the generalized half-logistic lifetime distribution. This model is ap-
plied on a solar lighting device and the stress factor consider to be temperature. 
Also, to save the minimum and maximum ideal test time, we applied the general-
ized type-II hybrid censoring scheme. The parameters of the proposed model are 
estimated by maximum likelihood and Bayes methods for point and corresponding 
interval estimators. The validity of results is tested under formulation Monte-Carlo 
simulation study. The proposed model is applied on analysis data obtained from 
solar lighting device as real data set for illustrative purposes. 
Key words: generalized half-logistic distribution, maximum likelihood estimation,  

generalized type-II hybrid censoring scheme, Bayesian estimation

Introduction

Half logistic distribution was introduced by Balakrishnan [1] to describe the distri-
bution of the absolute standard logistic random variable. The generalized version of half lo-
gistic distribution with its properties formulated by Balakrishnan and Hossain [2]. The random 
variable T is called generalized half-logistic (GHL) random variable if it has the cumulative 
distribution function (CDF):
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Also, the corresponding probability density function (PDF), reliability function R(t) 
and hazared rate function H(t) are given:
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Different authors has discussed the GHL distribution for example, the parameter of 
stress-strength reliability is estimated by Ramakrishnan [3], for the type-I progressive censor-
ing scheme, the shape parameter is estimated by Arora et al. [4], parameters estimation under 
Bayes method by Kim et al. [5], the reliability functions are discussed by Chaturvedi et al. [6] 
and the parameters are estimated under constant-stress by Almarashi [7].

The failure times are collected from a real population in complete or censored data. The 
word complete data is used when time-to-failure is observed for all units under the test. But, the 
word censored data is used when time-to-failure is observed for some not all units under test. In 
literature, several types of censoring schemes are available and the simply and commonly ones 
in life testing experiments are called type-I and type-II censoring schemes (CS). In type-I CS, the 
ideal test time is prior proposed to present the experiment terminate time and the number of failure 
is randomly. In type-II CS, a suitable number of failure needing for statistical inference is prior 
proposed and the test terminated time is randomly. Hence, we can say that two censoring schemes 
type-I or type-II have the luck of memory that, a small number of failure may be zero or large test 
time may be infinity, respectively. The survival units cannot be removed from the test in type-I and 
type-II CS other than the final point. If, we need to remove any units at any step of the experiment 
then, we refer to progressive censoring scheme, see Balakrishnan and Aggarwala [8]. In different 
area of life testing experiment, more conventional to propose the ideal test time τ and the number 
of failure need for statistical inference m at prior of the experiment which is known by hybrid 
censoring scheme (HCS). The experiment is terminated at min(Tm, τ) in type-I HCS or max(Tm, 
τ) in type-II HCS. Two schemes type-I HCS and type-II HCS have also, the luck of memory that, 
a small number of failure or large test time, respectively. Therefore, the statistical inference can 
be done with a low precision results, see Childs et al. [9], Gupta and Kundu [10], Kundu and 
Pradhan [11], and Algarn et al. [12]. The luck of memory that, a small number of failure or large 
test time appeared in the last schemes handled by generalized hybrid censoring scheme (GHCS), 
see Chandrasekar et al. [13]. In GHCS, the experiments has guarantees not only controls within a 
fixed number of failures but present at least the proper testing period in testing procedure which 
make more efficiency in statistical inference. The GHCS can be combined with type-I censoring 
scheme to present type-I GHCS described as follows. 

Suppose, a random sample of size n is random selected from a population put under 
test and two integer numbers (κ, m) with test time τ are prior proposed, where 1 < κ < m ≤ n. 
When the experiment is running, the unit failure time Ti is recorded until the κth failure time is 
observed. If, κth failure time less than τ, the experiment terminated at the min(Tm, τ). But, if κth 
failure time larger than τ then, the experiment is terminated at Tκ. Therefore, the observed data 
under type-I GHCS define by t̄ = (t1, t1,..., tr), where:
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and the test terminated time ξ is defined:
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Also, the GHCS can be combined with type-II censoring scheme to present type-II 
GHCS described as follows.

Suppose, the random sample of size n units put under the life testing experiment and 
two independent times 0 < τ1 < τ2 < ∞ with integer number m are prior proposed. After running 
the experiment the unit failure time Ti is recorded until the τ1 is observed. If, Tm is observed 
before the time τ1, the experiment terminated at τ1. But, if Tm is observed after the time τ1 then, 
the experiment is terminated at Tm if τ1 < Tm < τ2 and the experiment is terminated at τ2 if τ1 < τ2 < Tm. 
The observed data under type-II GHCS define by t̄ = (t1, t1,..., tr) where:
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and the test terminated time ξ is defined:
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In this paper, we adopted type-II GHCS which has the advantage that, experiment 
will be completed by time τ2. Hence, the time τ2 is the allow time that the researcher is willing 
to complete the experiment. Statistical inference of a life product under modern technology 
became more difficultly specially, for a high reliable product. Also, the problem of obtaining 
the sufficient number of information in a small period of time about a life product may need 
to stress higher than normal stress level which is known by accelerated life test (ALT) model, 
see Nelson [14]. The ALT model is widely used in several populations, see Bagdonavicius and 
Nikulin [15]. This model defined in different schemes such as, constant-stress, step-stress and 
progressive-stress ALT models. The units in a lifetime experiment has loaded under constant 
stress until the final point of the experiment say, constant-stress ALT model, Abd-Elmougod 
and Mahmoud [16]. But, if the stress is changed through determined period of time or constant 
number of failure then, step-stress ALT model is applied, Algarni et al. [17] and Ganguly and 
Kundu [18]. Finally, if the stress is kept continuously increasing at all steps of the experiment 
then, progressive stress ALT model is applied, Wang and Fei [19], Abdel-Hamid and Al-Hus-
saini [20], and Abu-Zinadah et al. [21]. In several cases, the experimenter may be need to test 
some units under normal stress level and other units under stress level which is known by 
partially ALT model. Therefore, in partially constant-stress ALT model some units put under 
normal stress level and other units put under stress level in the same time. But, in partially step-
stress ALT model all units put under normal stress level until constant period of time or number 
of failure then, the survival units put under stress level.

The reliability analysis under given lifetime data for some population units are of-
ten studied based on population characteristics and censoring methodologies for formulating 
inference of the unknown quantities in the population. The generalized half-logistic lifetime 
population have wide application in reliability analysis field of material or engineering prod-
ucts. Also, the problem of reliability analysis under modern technology for some life products 
under normal conditions is more serious. In this paper, we aim to adopt partially step-stress ALT 
model when the life of units under test have generalized half-logistic lifetime population. The 
observed lifetime sample are collected under type-II GHCS. The parameters of proposed mod-
el and the system reliability and hazard rate functions also are estimated by classical ML and 
Bayes methods for point and interval estimators. The quality of proposed model and method of 
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estimation are assessed and compared throu gh Monte-Carlo simulation study. The proposed 
model is used to analyze lifetime data obtained from solar lighting device.

The model and likelihood function

Suppose that, n units are randomly selected from a life product to put under a life 
testing experiment at normal conditions. The stress change time τ* and the ideal test times τ1 
and τ2 are prior proposed to satisfies, τ* ≤ τ1 < τ2. Also, the prior integer number m which define 
the suitable number needing for statistical inference are suggested. The experiment is running 
under normal stress conditions until the time τ* is observed then, it running under stress condi-
tions. The unit failure time Ti is recorded until the time τ1 is observed. If, Tm is observed before 
the time τ1, the experiment terminated at τ1. But, If Tm is observed after the time τ1 then, the 
experiment is terminated at Tm if τ1 < Tm < τ2 and the experiment is terminated at τ2 if τ1 < τ2 < Tm.  
The observed data under type-II GHCS define by t̄ = (t1, t2,..., tJ, tJ+1,..., tr) where J is the number 
of failure under normal conditions and r is defined by eq. (7). Therefore, the experiment for-
mulated to obtain the failure times for some fixed time, and hence the stress level is switched 
to the higher stress level until a suitable number of units fails. This switch aims to shorted the 
life of test units by inverse of the acceleration factor. Also, the total lifetime W under partially 
step-stress type-II GHCS passes through the normal and accelerated steps:
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where the lifetime of the unit is denoted at normal conditions by T and the parameter θ denote to 
the acceleration factor, generally θ > 1. Under consideration that, the lifetime of units distribut-
ed with generalized half-logistic given by eq. (1). Then, the random variable W of total lifetime 
has the distribution given:
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where the density function f1(w), defined by eq. (2) and the density f2(w) is obtained under trans-
formation technique using eqs. (2) and (10) to define:
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Also, the CDF, S2(w), and H2(w) of eq. (11) given:
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and
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For type-II GHCS under partially step-stress model t̄ = (t1, t2,..., tJ, tJ+1,..., tr) the joint 
likelihood function is given:
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where ξ is defined by eq. (8) and 0 < t1 < t2 < ... < tJ < τ* < tJ+1 < ...< tr < ∞.

Maximum likelihood estimation

The likelihood eq. (15) under type-II GHCS and partially step-stress model  
t̄ = (t1, t2,..., tJ, tJ+1,..., tr) can be:
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Therefore, the natural logarithm of the likelihood eq. (16) is reduced:
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Maximum likelihood equations

The likelihood equations are obtained from the log-likelihood function by zero-value 
for the first partially derivatives respected to the parameters values, see [22, 23]:
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and



Abu-Zinadah, H., et al.: Estimations of Accelerated Generalized Half-Logistic ... 
S80	 THERMAL SCIENCE: Year 2022 Vol. 26, Special Issue 1, pp. S75-S90

( )

( )

2( ) ( ) ( )= 1 = 1

, |
= 0

( )( ) ( )( ) ( ) = 0
1 1 1

tr r i
i

tii J i J

tn r n r e

e e e

τ θ τ

τ θ ζ τ τ θ τ τ θ ζ τ

α θ
θ

τα ζ τ ζ τα
θ

∗ ∗ − + −∗∗ ∗   

∗ ∗ ∗ ∗   − + − − + − ∗ ∗ − + −   + +      

∂
∂

−− − − −
− − +

  + + + 
  

∑ ∑

t

(19)

The likelihood equations is reduced:
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From eqs. (20) and (22), the maximum likelihood estimation (MLE) of the model pa-
rameters is reduced to one non-linear eq. (22) of θ can be solve with any iteration methods such 
as Newton Raphson or fixed point iteration. Hence, the MLE of the parameter α is obtained 
immediately from eq. (20). The following theorem present the MLE of the parameter θ and the 
value of initial point of the iteration.

Theorem: The conditional maximum likelihood estimator of θ given accelerated type-
II GHCS t̄ = (t1, t2,..., tJ, tJ+1,..., tr) cab be obtained by fixed point iteration:

( 1) 1 ( )= ( ) ( )i in r hθ θ+ −− (24)
where h(θ) given by eq. (23) after replacing α by eq. (20) and the initial value can be determine 
by the profile log-likelihood function defined:

( ) ( )( )=1 = 1

1 1| = log ( ) log log log
( ) 1 1

J r

ti tii i J

rg r n r r
D e e

τ θ τ
θ θ

θ − ∗ ∗− + −+

   −  + − + + −      +   + 
∑ ∑t (25)

Proof: The proof can be obtained immediately from eqs. (20), (22), and (23)
Remark 1:
Equation (20) has shown that, the conditional estimators of the parameters θ depen-

dent on (r – J) but, if (r – J) = 0 then, the estimate θ^ does not exist. therefore, the model reduced 
to normal condition.
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Remark 2:
The MLE of the reliability and hazard rate function for given t compute:
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Interval estimation

Fisher information matrix defined by the minus expectation of the second derivative 
of the log-likelihood function. Generally, the expectation of the second derivative more serous 
specially in high dimensional case. Hence, the approximate information matrix is the natural 
alternative of Fisher information matrix. Suppose that, Ω0(α^, θ

^ ) denote to approximate infor-
mation matrix defined:
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Hence, under consideration the normal properties of MLE (α^, θ^ ), (1 – 2γ) × 100% 
approximate confidence intervals of the parameters α and θ defined:

11 22
ˆˆ andZ Zγ γα θΩ Ω  (31)

where the value Zγ is the standard normal probability with right tailed γ and (Ω11, Ω12 ) are the 
elements of diagonal taken from approximate invariance of information matrix Ω–1

0 (α^, θ
^ ). 

Bayesian approach and MCMC method

The model parameters in this section are estimated under consideration that, gamma 
prior density function for the parameter of the distribution and non-informative prior informa-
tion for the accelerated parameter. Hence, Bayesian estimation of the unknown model param-
eters under squared error loss (SEL) function done for point and symmetric credible intervals 
as follows.
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The proposed prior information formulated:
1

1 ( ) exp( ), > 0; , > 0a b a bη α α α α∗ −∝ − (32)

and 
1

2 ( )η θ θ∗ −∝ (33)
Hence, the joint prior density:

1 1( , ) exp( ), > 0; , > 0a b a bη α θ α θ α α∗ − −∝ − (34)

The corresponding posterior distribution formulate with respected to eq. (16) and eq. (33):
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 From the posterior distribution (35), the full conditional densities:
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and

( )
( )

( )( )
( )( 1)

( )

2( | , ) exp ( ) log log 1
1

tin r en r e
e

τ θ ζ τ
τ θ τ

τ θ ζ τ
η θ α θ α

∗ ∗− + − ∗ ∗− + −− −
∗ ∗− + −

  
   ∝ − − + +   
    + 

t

( )
( )

( )

( )= 1

2log
1

tr i

tii J

e

e

τ θ τ

τ θ τ
α

∗ ∗− + −

∗ ∗− + −+

 
 +  
 + 

∑ (37)

The conditional distribution defined by eq. (36) is reduced to gamma distribution. 
Also, the conditional distribution defined by eq. (37) presented function its plot more similar 
to the normal distribution. Hence, the generation from two conditional distribution (mean pos-
terior distribution) is simpler. Bayes estimation of the unknown model parameters under SEL 
function is given:
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where φ(α, θ) be any function of the parameters may be α aor θ. The ratio of two integral rare-
ly obtained in closed form specially, in a high dimensional case hence, different methods can 
be used to approximation such as, numerical integration, Lindely approximate and MCMC 
method. In this section, we are used the MCMC method to obtain the empirical posterior dis-
tribution. The full conditional distributions presented by eqs. (36) and (37) have shown that, 
Gibbs algorithms and more general MH under Gibbs are good choice to solve this problem as 
the following algorithms [24].

Algorithms 1:
Step 1. Begin with initial values α(0) = α^, θ(0) =θ^ . 
Step 2. Set the indicator κ = 1.
Step 3. From the full conditional gamma density eq. (36) generate α(κ).
Step 4. From the conditional density eq. (37) generate θ(κ) by MH algorithms with 

known normal proposal distribution, with mean θ(κ–1) and variance Ω22.
–– Generate the candidate sample points θ(*), from normal distribution as proposal distributions.
–– Compute the acceptance probability:
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( ) ( 1)

,
= min 1,

,
P

κ

κ κ

η α θ

η α θ

∗

−

    
 

    

–– Generate random uniform value U from uniform (0, 1).
–– If P > U, we accept θ(*) as θ(κ) . Otherwise, the values reject and replaced by θ(κ–1). 

Steps 5. Set the indicator κ = κ + 1. 
Steps 6. From Steps 3-5 are repeated N times and for each step report α(κ) and θ(κ). 
The MCMC Bayes estimate of the model parameters as well as reliability and hazard 

failure rate function for given time t need to reaching to stationary distribution.
Point estimator: The point estimate after deleting the first burn-in iteration N*:
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where φ(α, θ) be any function of the parameters may be α or θ. 
Bayes variance: The Bayes variance of φ(α, θ):
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(37)

Credible interval: The Bayes (1 – 2γ)100% credible interval of the function φ(α, θ):

( ) (1 )( )
,

γ γ
ϕ ϕ∗ ∗− − −
 
  N N N N (38)

Simulation studies

In this section, we constructed Monte-Carlo simulation study to assess and compare 
the proposed estimation methods. Also, testing the numerical methods which is used to ap-
proximate the estimators. Therefore, we study the effect of change of population parameters, 
censoring scheme (m, τ1, τ2), affect sample size and stress change time τ*. From partially accel-
erated model, we generate 1000 random sample and for each sample, we compute the average 
of the parameters estimate (denoted by AE), the mean squared error (denoted by MSE), average 
interval length (denoted by AIL) and coverage percentile (denoted by CP). The true parameter 
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value are selected to satisfies that, the prior expectation for given a , b almost equal a/b (mean  
E(a) = a/b) which denoted to informative prior information and non-informative prior infor-
mation are taken to be a = b = 0.0001. Therefore, we are adopted two set of prior information  
(a, b) = (1, 4) and (a, b) = (3, 2) and the corresponding true parameter values are considered 
to be (α, θ) = (0.2, 2.5) and (1.5, 1.5), respectively. The times vector I = (τ, τ1, τ1) is selected to 
be (I1 = (2, 3, 5), I2 = (2, 4, 5), and I3 = (3, 3, 5) for the first choose of the parameter values and  
I1 = (0.7, 0.8, 2), I2 = (0.7, 1, 2), and I3 = (0.8, 0.8, 2) for the second choose). The numerical 
results of simulation study reported in tabs. 1-4 according the following algorithms.

 Table 1. The (AE and MSE) of MLE and Bayes estimate when (α, θ) = {0.2, 2.5}

  MLE  Bayes0  Bayes1

  α  θ  α  θ  α  θ

(n, m)  I  AE  MSE  AE  MSE  AE  MSE  AE  MSE  AE  MSE  AE  MSE 

(40, 25) 

 I1  0.305  0.115  2.705  0.437  0.288  0.117  2.672  0.400  0.242  0.085  2.525  0.366 

 I2  0.277  0.101  2.685  0.419  0.261  0.104  2.640  0.381  0.219  0.081  2.519  0.349 

 I3  0.254  0.089  2.666  0.409  0.249  0.090  2.623  0.377  0.208  0.072  2.482  0.318 

(40, 35) 

 I1  0.281  0.106  2.692  0.431  0.269  0.108  2.655  0.389  0.228  0.081  2.504  0.357 

 I2  0.261  0.094  2.671  0.408  0.248  0.093  2.638  0.366  0.204  0.079  2.503  0.341 

 I3  0.238  0.078  2.645  0.402  0.237  0.082  2.609  0.371  0.201  0.066  2.465  0.309 

(60, 40) 

 I1  0.259  0.095  2.669  0.417  0.247  0.100  2.624  0.377  0.214  0.078  2.485  0.346 

 I2  0.243  0.082  2.657  0.392  0.229  0.088  2.619  0.354  0.189  0.071  2.513  0.335 

 I3  0.217  0.069  2.635  0.388  0.225  0.075  2.589  0.351  0.195  0.054  2.479  0.314 

(60, 50) 

 I1  0.244  0.087  2.648  0.409  0.233  0.094  2.611  0.370  0.200  0.071  2.492  0.331 

 I2  0.231  0.079  2.641  0.381  0.215  0.083  2.603  0.345  0.171  0.0666  2.507  0.318 

 I3  0.214  0.061  2.629  0.380  0.211  0.071  2.565  0.341  0.173  0.051  2.488  0.300 

(80, 50) 

 I1  0.223  0.081  2.628  0.399  0.221  0.090  2.589  0.362  0.205  0.067  2.477  0.317 

 I2  0.215  0.074  2.624  0.378  0.211  0.075  2.581  0.336  0.182  0.059  2.492  0.309 

 I3  0.202  0.053  2.613  0.375  0.202  0.066  2.560  0.329  0.196  0.049  2.489  0.297 

(80, 65) 

 I1  0.217  0.073  2.611  0.387  0.217  0.084  2.579  0.344  0.195  0.059  2.464  0.308 

 I2  0.211  0.066  2.602  0.371  0.210  0.069  2.577  0.332  0.191  0.051  2.488  0.301 

 I3  0.189  0.050  2.600  0.367  0.197  0.057  2.554  0.327  0.203  0.039  2.491  0.284 

Algorithm 2:
 Step 1. Generate random sample of size n from GHL with parameter α. 
Step 2. For given τ* and θ used transformation (9) to obtain the complete partially 

step-stress accelerated sample.
Step 3. For given the parameters of type-II GHCS (τ1, τ1, m) generate partially accel-

erated type-II GHC sample (t1, t2, ..., tJ, tJ+1, ... tr). Hence, the values of J, r, and ξ from a sample 
are estimated.

Step 4. For given observed J, r, ξ, and t̄ = (t1, t2, ..., tJ, tJ+1, ... tr) compute, MLE and 
Bayes estimate point and interval estimate.
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Step 5. Steps from 1-4 are repeated 1000 times.
Step 6. Compute the value of AE, MSE, MIL and CP and the results are reported in 

tabs. from 1-4. 
From the numerical results reported in tabs. 1-4, we observe some points about the 

quality of the proposed model and the effect of, τ*, τ1, τ2, censoring scheme and parameter choice 
as follows.

Table 2. The (MIL and CP) of 95% MLE and Bayes interval estimate when (α, θ) = {0.2, 2.5}

  MLE  Bayes0  Bayes1

  α  θ  α  θ  α  θ

(n, m)  I  MIL  CP  MIL  CP  MIL  CP  MIL  CP  MIL  CP  MIL  CP 

(40, 25) 

 I1  0.549  0.87  4.752  0.88  0.539  0.89  4.745  0.89  0.401  0.89  4.255  0.90 

 I2  0.525  0.89  4.729  0.89  0.518  0.90  4.721  0.90  0.392  0.91  4.237  0.91 

 I3  0.512  0.90  4.711  0.89  0.507  0.91  4.700  0.90  0.378  0.90  4.215  0.92 

(40, 35) 

 I1  0.532  0.90  4.734  0.89  0.524  0.90  4.718  0.90  0.392  0.91  4.238  0.92 

 I2  0.514  0.89  4.718  0.90  0.504  0.91  4.704  0.91  0.381  0.92  4.224  0.91 

 I3  0.501  0.91  4.702  0.90  0.495  0.92  4.687  0.90  0.369  0.96  4.207  0.93 

(60, 40) 

 I1  0.517  0.90  4.715  0.90  0.511  0.93  4.703  0.92  0.379  0.92  4.215  0.93 

 I2  0.503  0.92  4.700  0.90  0.492  0.91  4.685  0.91  0.368  0.92  4.204  0.91 

 I3  0.489  0.93  4.792  0.91  0.481  0.91  4.665  0.94  0.351  0.93  4.189  0.92 

(60,50) 

 I1  0.501  0.92  4.691  0.91  0.491  0.92  4.685  0.93  0.362  0.92  4.177  0.93 

 I2  0.488  0.89  4.675  0.92  0.482  0.91  4.674  0.95  0.348  0.94  4.165  0.93 

 I3  0.471  0.92  4.771  0.91  0.471  0.92  4.652  0.91  0.333  0.91  4.145  0.94 

(80, 50) 

 I1  0.487  0.91  4.669  0.92  0.473  0.93  4.669  0.92  0.339  0.93  4.155  0.94 

 I2  0.465  0.91  4.654  0.92  0.467  0.91  4.653  0.93  0.328  0.94  4.147  0.93 

 I3  0.459  0.90  4.745  0.96  0.458  0.93  4.641  0.92  0.319  0.94  4.134  0.92 

(80, 65) 

 I1  0.452  0.92  4.639  0.93  0.461  0.93  4.638  0.94  0.318  0.94  4.127  0.94 

 I2  0.463  0.91  4.634  0.92  0.452  0.92  4.635  0.93  0.311  0.94  4.118  0.92 

 I3  0.451  0.94  4.725  0.90  0.445  0.92  4.619  0.91  0.302  0.95  4.109  0.93 

–– Partially accelerated type-II GHCS model serve well for statistical inference of the general-
ized half-logistic lifetime distribution.

–– The MLE and non-informative Bayes estimate are more closed for each.
–– Informative Bayes estimate serve well than maximum likelihood estimate or non-informa-

tive Baye estimate.
–– When affect sample size has increase MSE and MIL are decreases and CP more closed to 

proposed one.
–– The large value of τ* serve well of model parameter.
–– The large value of τ1 and τ2 serve well than small ones.



Abu-Zinadah, H., et al.: Estimations of Accelerated Generalized Half-Logistic ... 
S86	 THERMAL SCIENCE: Year 2022 Vol. 26, Special Issue 1, pp. S75-S90

Table 3. The (AE and MSE) of MLE and Bayes estimate when (α, θ) = {1.5, 1.5}

  MLE  Bayes0  Bayes1

  α  θ  α  θ  α  θ
(n, m)  I  AE  MSE  AE  MSE  AE  MSE  AE  MSE  AE  MSE  AE  MSE 

(40, 25) 
 I1  1.803  0.311  1.952  0.362  1.795  0.305  1.943  0.354  1.711  0.232  1.852  0.287 
 I2  1.785  0.301  1.933  0.354  1.777  0.293  1.927  0.345  1.692  0.224  1.831  0.275 
 I3  1.770  0.292  1.917  0.341  1.759  0.281  1.908  0.336  1.677  0.211  1.815  0.267 

(40, 35) 
 I1  1.771  0.294  1.919  0.348  1.766  0.291  1.917  0.326  1.688  0.218  1.824  0.275 
 I2  1.752  0.282  1.904  0.335  1.751  0.277  1.911  0.319  1.675  0.209  1.814  0.263 
 I3  1.741  0.278  1.900  0.328  1.737  0.271  1.890  0.311  1.669  0.200  1.802  0.258 

(60, 40) 
 I1  1.766  0.287  1.901  0.340  1.752  0.282  1.903  0.315  1.672  0.211  1.811  0.266 
 I2  1.748  0.275  1.891  0.328  1.745  0.270  1.900  0.311  1.664  0.203  1.800  0.254 
 I3  1.741  0.268  1.884  0.319  1.731  0.264  1.881  0.304  1.655  0.189  1.792  0.249 

(60, 50) 
 I1  1.747  0.275  1.891  0.328  1.735  0.273  1.887  0.305  1.659  0.204  1.781  0.251 
 I2  1.735  0.264  1.879  0.314  1.728  0.265  1.881  0.300  1.651  0.200  1.777  0.244 
 I3  1.729  0.255  1.871  0.307  1.718  0.255  1.874  0.297  1.644  0.179  1.762  0.237 

(80, 50) 
 I1  1.728  0.266  1.878  0.317  1.717  0.264  1.869  0.294  1.641  0.189  1.722  0.243 
 I2  1.718  0.251  1.864  0.309  1.714  0.257  1.855  0.288  1.632  0.182  1.718  0.237 
 I3  1.711  0.250  1.853  0.301  1.708  0.250  1.848  0.281  1.621  0.174  1.711  0.229 

(80,65) 
 I1  1.704  0.251  1.852  0.304  1.695  0.252  1.844  0.285  1.618  0.162  1.701  0.225 
 I2  1.691  0.247  1.841  0.300  1.687  0.247  1.835  0.272  1.611  0.157  1.691  0.219 
 I3  1.687  0.239  1.838  0.295  1.677  0.239  1.819  0.266  1.602  0.151  1.682  0.211 

Table 4. The (MIL and CP) of 95% MLE and Bayes interval estimate when (α, θ) = {1.5, 1.5}

  MLE  Bayes0  Bayes1

  α  θ  α  θ  α  θ
 (n, m )  I  MIL  CP  MIL  CP  MIL  CP  MIL  CP  MIL  CP  MIL  CP 

 (40, 25)  I1  3.520  0.89  3.842  0.89  3.518  0.90  3.824  0.89  3.385  0.90  3.722  0.90 
 I2  3.502  0.89  3.819  0.90  3.504  0.90  3.804  0.90  3.361  0.91  3.692  0.91 
 I3  3.487  0.90  3.800  0.90  3.481  0.91  3.775  0.92  3.332  0.90  3.651  0.92 

 (40, 35)  I1  3.491  0.91  3.819  0.90  3.491  0.93  3.785  0.93  3.351  0.92  3.700  0.93 
 I2  3.482  0.90  3.811  0.93  3.482  0.90  3.772  0.90  3.342  0.91  3.679  0.91 
 I3  3.475  0.92  3.792  0.90  3.469  0.96  3.759  0.95  3.336  0.91  3.644  0.93 

 (60, 40)  I1  3.478  0.92  3.800  0.92  3.470  0.93  3.766  0.93  3.331  0.92  3.679  0.93 
 I2  3.469  0.92  3.789  0.93  3.462  0.92  3.752  0.96  3.319  0.93  3.662  0.92 
 I3  3.457  0.93  3.781  0.91  3.456  0.93  3.741  0.92  3.311  0.93  3.651  0.93 

 (60, 50)  I1  3.454  0.93  3.777  0.92  3.441  0.94  3.742  0.92  3.311  0.94  3.651  0.93 
 I2  3.444  0.92  3.765  0.94  3.429  0.90  3.731  0.96  3.301  0.93  3.644  0.94 
 I3  3.439  0.94  3.761  0.92  3.417  0.92  3.724  0.97  3.289  0.95  3.631  0.93 

 (80, 50)  I1  3.438  0.90  3.751  0.93  3.419  0.92  3.718  0.93  3.291  0.92  3.629  0.93 
 I2  3.417  0.92  3.741  0.94  3.411  0.92  3.707  0.94  3.284  0.93  3.622  0.93 
 I3  3.412  0.90  3.732  0.90  3.403  0.93  3.702  0.91  3.280  0.94  3.617  0.92 

 (80, 65)  I1  3.415  0.94  3.731  0.92  3.400  0.93  3.694  0.94  3.262  0.93  3.601  0.94 
 I2  3.402  0.93  3.724  0.94  3.394  0.91  3.687  0.94  3.255  0.93  3.599  0.93 
 I3  3.388  0.92  3.717  0.92  3.391  0.93  3.679  0.92  3.238  0.92  3.582  0.91 
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Data analysis

In this section, we adopt a real data set obtained of a solar lighting device sample 
accelerated under temperature. We are adopted the analysis of partially step-stress ALT sample 
obtained from partially step-stress model formulated to assess the reliability characteristics of 
a solar lighting device. Also, the stress factor consider to be the temperature and normal stress 
considered at temperature 293 K and the stress level was changed during the time τ* = 5.0 (in 
hundred hours) to 353 K, see Kundu and Ganguly [25]. The lifetime of eq. (31) devices put 
under test are recorded to be:
Normal  0.140  0.783  1.324  1.582  1.716  1.794  1.883  2.293  2.660  2.674  2.725  3.085 
Conditions  3.924  4.396  4.612  4.892   
Stress  5.002  5.022  5.082  5.112  5.147  5.238  5.244  5.247  5.305  5.337  5.407  5.408 
Conditions  5.445  5.483  5.717          

To test whether accelerated generalized half-logistic distribution presents a good fit 
for the last data. Figure 1 has shown the MLE fit survival functions and the corresponding 
empirical survival function. The two, fitted distribution functions and observed distribution 
functions have Kolmogorov-Smirnov (KS) distance to be 0.1496 and the corresponding p-value 
to be 0.8329. Hence, generalized half-logistic distribution presents a good fit for these sample 
of data. From the complete data, we observe the MLE α^ and θ^ of the parameters α and θ is 
equal to α^ = 0.1514 and θ^ =14.503. Now, we generate type-II GHC sample under consideration  
τ1 = 5.1, τ2 = 5.4, m = 25, and, J = 16. The accelerated type-II GHC sample is reported to be 
{0.14, 0.783, 1.324, 1.582, 1.716, 1.794, 1.883, 2.293, 2.66, 2.674, 2.725, 3.085, 3.924, 4.396, 
4.612, 4.892, 5.002, 5.022, 5.082, 5.112, 5.147, 5.238, 5.244, 5.247, 5.305}. Also, the integer 
value of r = 25 and the terminated test time ξ = tm = 5.305. From the profile log-likelihood 
function (22) in fig. 2, we used the initial value of iteration be θ =16.0. The point estimate of 
the model parameters and the parameters of life when t = 3.0 are computed by ML and Bayes 
methods under SEL and non-informative prior information (a = 0.0001 and b = 0.0003) are re-
ported in tab. 5. The corresponding 95% asymptotic confidence interval and credible intervals 
are reported in tab. 6. The problem generation from the full conditional posterior distribution 
and its convergence under Bayesian approach is described by figures which present a simula-
tion number of α and θ generated by MCMC method and the corresponding histogram by figs. 
3-6 which have shown the quality of the generation from posterior distribution.

Figure 1. The fitted survival functions – 1  
based on MLE and empirical survival  
function – 2 of the solar lighting device sample 

Figure 2. The profile log-likelihood function of θ
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Table 5. The Point ML and Bayes estimate
Method  α  θ  R(3.0)  H(3.0)

 (.)ML  0.1951  17.4966  0.6315  0.6335 
 (.)B-MCMC  0.1959  18.0467  0.1859  0.1867 

Table 6. The 95% ML and Bayes interval estimate
 Pa  ACI  Lenth  CI  Lenth 
 α  (0.1082, 0.2822)  0.1740  (0.1212, 0.2883)  0.1671 
 θ  (1.8116, 33.1816)  31.3700  (6.4719, 35.8470)  29.3752 

Figure 3. The generated MCMC samples of α

Figure 4. The generated MCMC samples of θ

Figure 5. The generated MCMC samples of R

Figure 6. The generated MCMC samples of H
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Conclusion

The reliability of products need to collect some information about the life of product. 
Therefore, needing to the censoring scheme which save the ideal test time and the minimum 
number of failures needing for statistical inference, we applied the generalized type-II hybrid 
censoring scheme. Also, needing to obtain the reliability results more quickly for a high reliable 
product then, we applied the ALT model. In our paper, we consider the products have the life 
distributed with generalized half-logistic lifetime distribution. The unknown model parameters 
are estimated by ML and Bayes methods. The numerical results from Monte-Carlo simulation 
study and illustrative example to assess and discuss the developed results.
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