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Under consideration of this paper is the application of Jordan canonical form and 
symplectic matrix to two conformable fractional differential models. One is the 
new conformable fractional vector conduction equation which is reduced by using 
the Jordan canonical form of coefficient matrix and solved exactly, and the other is 
the new conformable fractional vector dynamical system with Hamilton matrix and 
symplectic matrix, which is derived by constructing the conformable fractional 
Euler-Lagrange equation and using fractional variational principle. It is shown 
that Jordan canonical form and symplectic matrix can be used to deal with some 
other conformable fractional differential systems in mathematical physics. 
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Introduction 

Fractional calculus has played an irreplaceable role in many fields and attracted 

more and more attention [1-13]. In this paper, we mainly have two contributions. One is to 

solve the following new conformable fractional vector conduction equation: 

( ) (2 )( ) ,   (0 1;  , 0;  )n

t xu P Q u x t n N                     (1) 

where  1 2 3( , ), ( , ), ( , )
T

u u x t u x t u x t , (2 ) ( )x x xu u     , and ( )

tu   are the conformable frac-

tional partial derivatives [9] of x and t, respectively, and P and Q are two 3 × 3 matrices: 

8 3 6 49 3 18 72

3 2 0 ,   9 36 1 18 54

4 2 2 30 6 2 44

n n
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n n

     
   

        
         

     (2) 
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The other is to derive the new conformable fractional vector dynamical system: 

d
,   (0 1;  0)

d

v H
Hv J t

t v

 

 



    


      (3) 

with 

0
,   ,   

0

n

T

n

IA D q
H J v

IB A p

    
      

     
      (4) 

where 

1 1 1,   / 2,   / 4,   ( , , ; ; )T n n T TD M A M G B K G M G M G K R G G K K             

M is a positive definite matrix, In is the n-order identity matrix, and the n-dimensional column 

vectors p and q satisfy the constrain: 

d

2d

q Gq
p M

t




             (5) 

Some useful preparations 

For the given arbitrary n-order quasi-diagonal matrix 1 2diag( , , , )sP P P P , here 

1 2( ) ( , 1,2, , ; 1,2, , ; )
i ii jl i sn nP p j l n i s n n n n        are upper or lower triangle ma-

trices with equal main diagonal elements ( 1,2, , ; 1,2, , )i iklp p k l n i s    , we have the 

following lemma and theorems. 

Lemma 1 [10]. Suppose i i i iP m I    for i = 1,2,…,s, then 0( 1,2, , )in
i i s   .  

Theorem 1. Suppose ki = m for m < ni while ki = ni – 1 for m  ni here it is assumed 

that i = 1,2,…,s, then: 

0

0

!
,   ,   

!( )!

i

i i i

i

k
m s m s sm k

i m i i i i m

s

n
P C p I C

k m k

 



    


          (6) 

Proof. We write i i i iP p I   . Clearly, the quantitative matrix piIi and the matrix i 

are commutative. Then one has: 

0

( ) i i i

i

m
m s m s sm m

i i i i m i i

s

P p I C p
 



             (7) 

If i ik m n  , then eq. (6) is obviously true. Since Lemma 1 tells that 

0,  ( 1,2, , )m
i i s    always hold for m  ni, eq. (7) degenerates into eq. (6) when 

i ik m n  . The proof is end. 

Theorem 2. Suppose ( )i ik m m n   or 1( )i i ik n m n    for i = 1,2,…,s, then P
m
 

has expansion formula: 
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     (8) 
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Proof. In view of 1 2diag( , , , )sP P P P , we have 1 2diag( , , , )m m m m
sP P P P . Then 

one can arrive at eq. (8) by using eq. (7). We thus complete the proof. 

Example 1. Calculate P
100

, here: 

2 1 1 0 0

0 2 4 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 5 3

P

 
 
 
 
 
 
 
 

           (9) 

It is easy to see from eq. (9) that we can write 1 2diag( , )m m mP P P . Here m = 100, k1 = 

2, p1 = 2, k2 = 1, p2 = 3 and: 

1 1 2 2

2 1 1 0 1 1
3 0 0 0

0 2 4 ,   0 0 4 ,   ,   
5 3 5 0

0 0 2 0 0 0

P P

    
      

           
      

   

      (10 

Since 100 ,  ( 1,2)im k i   , with the help of eq. (8) we have: 

1 1 1

1

2 2 2

2

100 99 99

2
100 100 100 99
100 1

0100 100

1
100 100 100
100 2

0 99 100

2 100 2 9800 2

2 2 400 2

2

3 3

500 3 3

j j j

j

j j j

j

C

P

C

 



 



  
   

    
    
   

    
    





 (11) 

Definition 1 [11]. The block matrix K is called a 2n-order symplectic matrix over the 

number field P, if there exist matrices , , , n nA B C D P   which make: 

0
,   ,   

0

nT

n

IA B
K JK J K J

IC D

  
     

   
        (12) 

Symplectic matrices are very important and have some applications and helpful 

properties [11-13]. Here we would like to recall and list several properties of symplectic ma-

trices. 

Property 1. Suppose V is a linear space on the number field P and f is a 

non-degenerate antisymmetric bilinear function, then necessary and sufficient condition for 

the matrix K of linear transformation  under a set of symplectic orthogonal bases of 

symplectic space (V,f ) to be a symplectic matrix is that  must be a symplectic transformation 

on (V,f ). 
Proof. Taking a set of symplectic orthogonal bases of symplectic space (V,f ) and 

recording them as 1 2 1 2, , , , , , ,n n        , then we can see that the metric matrix of f un-

der this set of symplectic orthogonal bases is exactly J. We further let: 

1 2 1 2

1 2 1 2

1 2 1 2

( , , , , , , , )

( , , , , , , , )

( , , , , , , , )

n n

n n

n n K

     

     

     

  

  

  



 



        (13) 

When  is a symplectic transformation, we have: 

( , ) ( , ) ( , ) 1,   (1 )i i i i i if f f i n                (14) 
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( , ) ( , ) ( , ) 0,   ( , ; 0)i j i j i jf f f n i j n i j                      (15) 

Thus, 1 2 1 2, , , , , , ,n n         is also a set of symplectic orthogonal bases of 

symplectic space (V,f ), and the metric matrix of f under this set of symplectic orthogonal 

bases is also J. In this case, we let the transition matrix from 1 2 1 2, , , , , , ,n n         to 

1 2 1 2, , , , , , ,n n         be K. Since the metric matrices under different sets of bases are 

congruent, we have TK JK J . This shows that K is a symplectic matrix. 

Conversely, if K is a symplectic matrix, we take: 

1

1 2 1 2 1 2 1 2( , , , , , , , ) , ( , , , , , , , ) ,   ( , )n

n n n nX Y V X Y P              

          (16) 

Then one has: 

1 2 1 2 1 2 1 2( , , , , , , , ) ,   ( , , , , , , , )n n n nKX KY                       (17) 

and obtain 

( , ) ( ) ( ) ( ) ( , )T T T Tf KX J KY X K JK Y X JY f           (18) 

which hints  is a symplectic transformation on symplectic space (V,f ). The proof is end. 

Property 2 [13]. Symplectic matrix K can be represented by the product of at most 

seven symplectic matrices of the following forms: 

1

0 0
,   ,   

00

n n

n n

I I RS

T I IS 

    
    

    
         (19) 

where T and R are n-order symmetric matrices while S = S
T
 is a n-order reversible matrix. 

Property 3. Suppose K is a symplectic matrix, then K is reversible and det 1K  , 

and K
–1

 and K
T
 are all symplectic matrices. 

Proof. Since K is a symplectic matrix, we have TK JK J . Then it is easy to see 

that: 

2det( ) (det ) det 1TK JK K J          (20) 

So, det K  may be 1 or –1. However Property 2 only supports det K = 1. This also 

shows that K is reversible. Calculating out 1 1 1 1( ) ( ) ( )T T TK JK K J J K J J      tells that K
–1

 

is a symplectic matrix. Similarly, using TK JK J  and the reversibilities of K and J yields: 

1 1 1 1 1( )T T T TK JK KJK KJJK J KK J J J               (21) 

from which we can conclude that K
T
 is a symplectic matrix. The proof is finished. 

Property 4. The necessary and sufficient condition for K to be a symplectic matrix is 

equivalent to one of the following conditions: 

,   ,   T T T T T T

nA C C A B D D B A D C B I            (22) 

1

T T

T T

D B
K

C A


 

  
 

           (23) 

,   ,   T T T T T T

nAB BA CD DC AD BC I            (24) 
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TKJK J            (25) 

Proof. Firstly, Definition 1 shows that K is a symplectic matrix if and only if 
TK JK J . It is easy to see that: 

0

0

T T T T T T
nT

T T T T T T
n

I A BA C A C C A A D C B
K JK

I C DB D B C D A D B B D

       
      

       
      (26) 

holds if and only if eq. (22) is true. 

Secondly, it is easy to see that K and J are all reversible. So, TK JK J  holds if 

and only if 1 1 TK J K J  , namely: 

1 1
0 0

0 0

T T T T
n nT

T T T T
n n

I IA C D B
K J K J

I IB D C A

 
        

        
       

     (27) 

Thirdly, from eq. (23) we know that K is a symplectic matrix if and only if eq. (27) 

is true. This is equivalent to: 

1
0

0

T T T T T T
n

T T T T T T
n

IA B D B AD BC BA AB
KK

IC D C A CD DC DA CB


        

        
        

     (28) 

which reaches eq. (24). 

Finally, when K is a symplectic matrix, Property 3 tells that K
T
 is also a symplectic 

matrix. Thus eq. (25) holds. Conversely, if eq. (25) is true, namely K
T
 is a symplectic matrix, 

then ( )T TK K  is also a symplectic matrix. The proof completes. 

Property 5. Assuming that K is a symplectic matrix, it is not certain whether A, B, C, 

D are reversible. But when A or D is a zero matrix, then B and C are all reversible and 
1 TB C  , while when B or C is a zero matrix, A and D are all reversible and 1 TD A  . 

Proof. It can be seen from Definition 1, Property 3 and eq. (22) that when K is a 

symplectic matrix, although K is reversible, it cannot determine whether A, B, C, and D are 

reversible. When A = 0 and/or D = 0 eq. (22) leads to T
nC B I  . This indicates that both B 

and C are reversible and 1 – TB C  . By a similiar way, we can arrive at the conclusion that 

when B = 0 and/or C = 0, both A and D are all reversible and 1 TD A  . We complete the 

proof. 

Property 6. Suppose K1 and K2 are symplectic matrices, then K1K2 is also symplectic 

matrix, and 1 2K X K  has a unique solution X, here X is also a symplectic matrix. 

Proof. Since K1and K2 are symplectic matrices, then we have 1 1
TK JK J  and 

2 2
TK JK J . Thus, we further gain 2 1 1 2 2 2

T T TK K JK K K JK J  , namely 1 2 1 2( ) ( )TK K J K K J . 

Therefore, K1K2 is a symplectic matrix. Using K1 as the invertibility of symmetric matrix, 

from 1 2K X K  we can get 1
1 2X K K . Considering Property 3, we know that 1

1
–K  is a 

symplectic matrix. Therefore, 1
1 2X K K  is also a symplectic matrix. The proof is complet-

ed. 

Property 7 . Suppose the characteristic polynomial of symplectic matrix K is: 

2 2 1

1 2 1 2ƒ( ) | |  n n

n n nI K a a a    

           (29) 

then 2 1( ) ( )nf f   , 2 1na   and 2 ( 1,2, ,  )i n ia a i n  . In addition, the number of posi-

tive and negative numbers in the eigenvalue of symplectic matrix K is even, and the number of 

–1 and +1 in the eigenvalues are also even. 
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Proof. Referring to the method of [11], we calculate 1 1 1( ) ( )T TK J K J J K J     , 

det K = 1 and det J = 1. Then one has [11]: 

1 1 1

1 2 1 2 1

ƒ( ) | | | ( ) ( ) | | || ( ) || |

| ( ) || | | | | | ( )

T T T

n n n

T T T n n

n n n

I K E J K J JI J J K J J I K J

I K J K K I I K f

    

     

  

  

        

      
   (30) 

which leads to 2 1na   and 2 ( 1,2, ,  )i n ia a i n   must be true. This also shows that in the 

eigenvalue of symplectic matrix K,  and –1
 occurs at the same time, so they have the same 

multiplicities [11]. Since det K = 1 the product of all eigenvalues of K is 1 , so the multiplicity 

of eigenvalue –1 is even. Because the sum of multiplicities of eigenvalues which are not equal 

to 1 and the order of K are all even numbers, the number of +1 is also even number. 

Property 8. Assumed vector groups 1 2, , , p    and 1 2, , , q    are two Jordan 

chains correspond to the same eigenvalue  of the symplectic matrix K, and 1 2, , , q    

composes a Jordan chain with eigenvalue –1
, here   1 and p  q, then there hold: 

2

1 1 1 1 ( 1) 0,  (1 , )T T T T

i j i j i j i jJ J J J i j p                         (31) 

1 1 1 1 0,  (1 ,1 )T T T

i j i j i jJ J J i p j q                       (32) 

2

1 1 1 1 ( 1) 0,  (1 ,1 )T T T T

i j i j i j i jJ J J J i p j q                         (33) 

0,  (1 , )T

i jJ i j p              (34) 

0,  (1 ,1 )T

i jJ i p j q i                   (35) 

0,  (1 ,1 )T

i jJ i p j q               (36) 

Proof. Since 1 2, , , p   , 1 2, , , q    and 1 2, , , q    compose three Jordan 

chains, we have: 

1

1 1 1(1 ),   (1 ),  (1 ) i i i j j j j j jK i p K j q K i q         

                (37) 

Here 0 0 0 0      have been assumed. Then following to the method of [18], we have: 

1 1

2

1 1 1 1

( ) ( ) ( ) ( ) ( )T T T T T

i j i j i j i i j j

T T T T

i j i j i j i j

J K JK K J K J

J J J J

         

        

 

   

     

   
   (38) 

which can be rewritten as eq. (31). Starting from eq. (31), we finally gain eq. (34) by induction. 

Similarly, we can verify eqs. (32) and (35), and eqs. (33) and (36). 

Reduction and solutions of fractional system (1) 

To solve system (1), we first reduce P
n
. We employ the method of [15] to determine 

a reversible matrix T such that 1T PT J  , here J is the Jordan canonical form of P. Since: 

2( ) | | ( 1) ( 2)Af I P                (39) 

Thus, the characteristic values of P are 1 2 1    and 3 2  , and then the ele-

mentary factors 2( 1)   and 2   of P can be obtained. In this case, we have 
11 2P   and 

21 1P  . Since 11 2 1P   , we need to perform elementary row transformation on ( )A E b : 
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1 2 3

2 1 2 3

3 1 2 3

7 3 6 1 1 3

( ) 3 3 0 0 2 3

4 2 3 0 0 0 3 6

b b b

A E b b b b b

b b b b

       
   

        
         

    (40) 

Considering the condition 1 2 33 6 0b b b   , we construct the homogeneous linear 

equations: 
1 1

2 2

3 3

1 1 3 0 1 1 3 0

0 2 3 0 0 2 3 0

3 1 6 0 0 0 0 0

x x

x x

x x

              
         

           
         
         

      (41) 

Solve eq. (41) to obtain a basic solution system, that is, the first vector in the cyclic 

basis corresponding to 11 2P  , which is recorded as (1)
(1)1 (3,3, 2)TX   . Taking (1)

(1)1b X  and 

solving the nonhomogeneous linear equation system (1) (1)
(1)2 (1)1( )A E X X  , namely: 

1

2

3

1 1 3 1

0 2 3 2

0 0 0 0

x

x

x

      
    

     
    
    

           (42) 

we obtain the second vector (1)
(1)2 (3,2, 2)TX    in the cyclic basis corresponding to 11 2P  . 

Solving again the homogeneous linear equation system (2)
(1)1( ) 0A E X   yields 

(2)
(1)1 (8,6, 5)TX   . Then: 

(1) (1) (2) 1

(1)1 (1)2 (1)1

3 3 8 1 1 0

( , , ) 3 2 6 ,   0 1 0

2 2 5 0 0 2

T X X X T PT J

   
   

      
        

      (43) 

Further using Theorem 2 we have: 

1

3 3 8 1 0 2 1 2 49 9 3 18 72

3 2 6 0 1 0 3 1 6 9 36 1 3 54 18

2 2 5 0 0 2 2 0 3 30 6 2 44 12n

n nP J

n n n n

n n n

n n n

T T 

         
     

            
               



 

 (44) 

Thus, system (1) is reduced to: 
( ) (2 )

1, 1,

( ) (2 )

2, 2,

( ) (2 )

3, 3,

9 0 0

0 3 0

0 0 12

t x

t x

t x

u n u

u n u

u n u

 

 

 

    
    

     
    
    

         (45) 

Taking the traveling wave transformation / / ( 1,2,3)i i i ik x c t w i       , here 

ki, ci, and wi are constants, we have 
2

1 1 1 19c u k nu  , 
2

2 2 2 23c u k nu    and 
2

3 3 3 312c u k nu  . 

Integrating these three equations with respect to 1, 2, and 3, respectively, taking the integral 

constants as zeros, then solving the resulting equations yields exact and explicit solutions of 

system (1): 
31 2

31 2 22 2
31 2 129 3

1 1 1 2 2 2 3 3 3e ,  e ,  e ,  ( 1,2,3)

cc c

k nk n k n

i i i i

x t
u a d u a d u a d k c w i

  


 



           (46) 

Derivation of fractional system (3) 

Fixed two endpoints 1 20 t t  , referring to [16] we find a sufficiently smooth solu-

tion f(t) when the following conformable fractional functional is extremum: 

1 2, ( ) ( ) d ( )
( ( , , ))( ),   ( ),   

d

x x f t
I L f f t t f f t f

t


 

   
          (47) 
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where the variation of f(t) satisfies 1 2( ) ( ) 0f t f t   . Therefore, the variation of fractional  

functional   is as: 

1 2, ( ) ( ) ( )

( ) ( )

( ( , , ) ( , , ))( ) 0x x

f f f

I L f f f f t L f f t t

  

  

  

 

 

     

    
    (48) 

Assume that f(t) and ( ) ( )f t f t  have the first-order approximation curve: 

( ) ( ) ( )

( ) ( )

( )

( )

( , , ) ( , , )

( , , ) ( , , )

( )

L f f f f t L f f t

L f f t L f f t
f f

f f

  

 

   
 

  

 

 

   

 
 

 

     (49) 

Substituting eq. (49) into eq. (48), we have: 

1 2

( ) ( )

, ( )

( )

( , , ) ( , , )
( ) 0

( )

x x L f f t L f f t
I f f t

f f

   
 

   
 

  
  

  
     (50) 

Through fractional integration by parts, from eq. (50) we get: 

2

1

1 2

( )

( )

( ) ( )
,

( )

( , , )
( )

( )

( , , ) ( , , )d
( ) 0

d ( )

t

t

t t

L f f t
f t

f

L f f t L f f t
I f t

f t f

 


 

   
 

    










  
   

  

   (51) 

Considering 1 2( ) ( ) 0f t f t   , we simplify eq. (51) as: 

1 2

( ) ( )

,

( )

( , , ) ( , , )d
( ) 0

d ( )

t t L f f t L f f t
I f t

f t f

   
 

    


   
   

    
   (52) 

We, therefore, derive the conformable fractional Euler-Lagrange equation: 
( ) ( )

( )

( , , ) ( , , )d
0

d ( )

L f f t L f f t

f t f

   
 

   

 
 

 
    (53) 

Considering the homogeneous fractional vibration equation with n DoF: 

(2 ) ( ) 0Mq Gq Kq              (54) 

with M, q, G, and K described in eq. (3). The fractional Lagrange function of eq. (54) is: 

( ) ( ) ( ) ( ) ( )1
( , , ) [( ) ( ) ( ) ] 0

2

T T TL q q t q Mq q Gq q Kq    

        (55) 

the corresponding action of which is the fractional functional of the displacement q to be 

solved: 

1 2, ( )( ( , , ))( )
t t

S I L q q t t

         (56) 

Introducing a dual momentum: 

( )

( )

1

2( )

L
p Mq Gq

q




 


  


       (57) 
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namely: 

( ) 1 11

2
q M Gq M p            (58) 

Performing fractional Legendre transformation with A, B, D described in eq. (3): 

( ) ( ) 1 1
( , , ) ( , , )

2 2

T T T TH q p t p q L q q t p Dp p Aq q Bq 

         (59) 

Similar to eqs. (48) and (53), we have the fractional variational principle: 

1 2, ( )( ( , , ))( ) 0,   0
t t TS I p q H q p t t S

                (60) 

and hence obtain a pair of fractional Hamilton canonical equations: 

( ) ( ),   TH H
q Aq Dp p Bq A p

p q

 
  

 

 
       

 
      (61) 

the vector form of which are exactly system (3). We would like to note that the fractional 

Hamilton function H of system (61) is conserved. In fact, using system (61) we have: 

( ) ( )d d
  0

d d

H H H H H H
q p

t q p t t t

     
      

     

   
     

   
    (62) 

Besides, the matrix H of system (3) is a Hamilton matrix [12]. This is because that 
( )TJH JH  with J  being a symplectic matrix. At the same time, there is a relationship 

between the Hamilton matrix H and the fractional Hamilton function H, that is, 
( ) / 2TH v JH v   . With similar ideas, it is worthwhile to extend some existing models 

[17-20] to fractional-order cases. 
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