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Discontinuous heterogeneous materials, such as rocks and concrete, exhibit 
non-Fourier heat conduction. To predict this type of conduction behavior in dis-
continuous materials, a bond-based peridynamic heat conduction model based on 
the peridynamic theory was derived by introducing the dual-phase-lag model. The 
model was verified by the results obtained using other numerical methods. The 
Weibull distribution function was introduced to describe the heterogeneity in the 
thermal conductivity. The heat conduction in a plate with two pre-existing cracks 
under thermal shock was simulated. The effects of phase lag and heterogeneity 
were discussed. The results showed that the heat transfer rate is mainly controlled 
by the phase lag τq of the heat flux. When τq remains unchanged, the heat transfer 
rate increases with the increase in the phase lag τT of the temperature gradient. The 
influence of cracks on the temperature field is mainly reflected in the area near the 
crack end. Although the temperature in the local area may be positively correlated 
with τT in the short term, the long-term influence of the factor becomes increas-
ingly weaker. The proposed method has a wide application prospect in simulating 
non-Fourier’s heat conduction in discontinuous heterogeneous materials.
Key words: discontinuous heterogeneous material, peridynamics, phase lag, 

heat conduction, heterogeneity, non-Fourier’s law

Introduction

Discontinuous heterogeneous materials, such as rocks and concrete, are widely found 
in nature and practical engineering [1, 2]. These materials often have discontinuities due to nat-
ural defects such as cracks. Heterogeneity refers to the change in the physical properties at each 
point in a specific physical field with the change in the spatial co-ordinates, such as the thermal 
conductivity in the temperature field and the permeability in the seepage field. Compared with 
continuous homogeneous materials, the heat conduction and temperature distribution in dis-
continuous heterogeneous materials are more complex. Studying the transient heat conduction 
in discontinuous heterogeneous materials is of great significance for engineering problems in 
various fields, such as in the exploitation of clean energy, including geothermal energy and 
shale gas from deep rock masses [3], thermomechanical coupling in nuclear reactors [4], and 
heat transfer in biological systems (such as tissues) [5].
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Although Fourier’s law has been proven to be suitable for simulating heat conduction 
problems in most engineerings [6, 7], the heat wave is propagated with infinite rate. In practice, 
for some unsteady heat conduction processes under extreme heat transfer conditions, such as 
low and ultra-high temperatures, and heat transfer processes under micro-spatial scale condi-
tions, the temperature changes suddenly, making Fourier’s law inapplicable [8]. To overcome 
the limitations of Fourier’s law in such cases, several new heat conduction models have been 
proposed. Here, two commonly used models are briefly introduced. Cattaneo [9] and Vernotte 
[10] proposed a hyperbolic heat conduction equation based on the existence of the relaxation 
time between the heat flow and the temperature gradient, namely the Cattaneo-Vernotte (CV) 
model. This model, however, only considers the case where the heat flow density lags behind 
the temperature gradient and does not conform to the Galilean invariant principle. Tzou [11] 
proposed a dual-phase-lag (DPL) model considering the phase lags of both the heat flux and 
temperature gradient. This model has been proven to be more effective and has been widely 
used in simulating the heat conduction in materials [12].

A non-Fourier’s law heat conduction problem can be mainly solved using two types 
of methods: analytical methods and numerical methods. The former includes the Fourier trans-
form method [13], variable separation method [14], integral transform method [15], and ei-
genvalue method [16]. The latter mainly includes the finite difference method [17], finite ele-
ment method (FEM) [18], finite volume method (FVM) [19], extended finite element method 
(XFEM) [20], boundary element method (BEM) [21], and numerical manifold method (NMM) 
[22]. Compared with analytical methods, numerical methods have a wider application range 
and are more efficient. However, for discontinuous materials containing cracks, the element 
boundary in conventional numerical methods, such as the FEM, XFEM, and FVM, must be 
consistent with the boundary of the solution domain when meshing, and re-meshing must be 
done if the crack length changes. Because of its strong grid dependence, it is inconvenient to 
solve problems involving discontinuities and their evolution [23]. The BEM has the problem 
of singularity of variables when simulating discontinuous boundary. In NMM simulation, the 
crack can only extend to the edge of the element and cannot reach its interior. 

Silling et al. [24-26] proposed the peridynamics (PD) theory and the corresponding 
numerical method. Unlike the classical heat conduction local theory, such as the FEM, which 
assumes that the heat flux density at a point is only determined by the temperature gradient at 
that point, the PD is a non-local theory, which discretizes a solid into a series of material points 
containing all the physical property information in the spatial domain. The heat flux density 
at each point is assumed to be affected by all the other points in the region of finite radius. In 
the process of heat conduction, the heat carrier carries heat from one material point to another. 
This process is essentially non-local, therefore, a non-local model can better describe the heat 
conduction phenomenon [27, 28]. In addition, unlike the classical continuum theory based on 
the derivative of the displacement component, the PD is based on the integral equation and 
overcomes the grid dependence when dealing with discontinuous problems.

The PD model has three forms: the bond-based (BB-PD), ordinary state-based  
(OSB-PD), and non-ordinary state-based models, among which the BB-PD model is the most 
widely used. In addition, BB-PD theory has fewer parameters and its constitutive model is easier 
to understand than the other two theories. Therefore, it is most convenient to use this theory to 
simulate the heat conduction of materials. In the application of BB-PD model in heat transfer 
problem, Gerstle et al. [29] proposed a PD framework that can simultaneously simulate the heat 
transfer, deformation, and electrical potential distribution in a 1-D electromigration process. Bo-
baru and Duangpanya [30] studied 2-D heat conduction in discontinuous materials containing 
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cracks and in fiber-reinforced composites. Jafari et al. [31] studied the effect of using different 
kernel functions on PD heat conduction simulation results. In the application of OSB-PD model, 
Oterkus et al. [28] deduced a heat conduction formula for the OSB-PD model, this formula was 
later improved by Chen et al. [32], and its effectiveness was verified by comparing with the results 
obtained by Bobaru and Duangpanya [30]. Agwai et al. [33] deduced a fully coupled PD thermo-
mechanical model and proposed a surface correction factor to improve the numerical simulation 
results. Liao et al. [34] proposed an improved OSB-PD model to simulate the transient heat con-
duction in functionally graded materials with thermally insulated cracks. Wang et al. [35] derived 
a OSB-PD heat conduction model based on the non-Fourier’s law and verified that it can simulate 
heat conduction problems from the nanoscale to the macroscopic scale. Thus far, most PD simula-
tions have been based on Fourier’s law and adopt the macro equivalent thermal conductivity. The 
influence of discontinuity and heterogeneity on non-Fourier heat conduction is rarely considered.

In this study, the DPL model was introduced to derive a heat conduction model within 
the BB-PD theoretical framework based on the non-Fourier’s law, and a PD numerical imple-
mentation method for a discontinuous material containing cracks under thermal boundary con-
ditions was introduced. The feasibility of the model was verified by three numerical examples. 
The Weibull distribution function was introduced to reflect the heterogeneity in the thermal 
conductivity of the materials, and the heat conduction behavior of a plate with pre-existing 
cracks under thermal shock was simulated. The effects of phase lag of the heat flux, phase lag 
of the temperature gradient and heterogeneity on the distribution law of the temperature field 
and heat transfer rate were investigated. It is expected that this study could provide theoretical 
reference for engineering problems such as geothermal energy or shale gas exploitation, so as 
to improve the corresponding resource exploitation efficiency.

Theory and methods

The PD for heat conduction based on Fourier’s law

Unlike the classical local theory, which only considers the interaction between points 
in contact with material points, the PD theory, as a non-local theory, assumes that at any time, t, 
any point x in the object has an interaction fT (x′, x, t) with any other point x′ in a certain area Hx 
around it. The Hx is the horizon of x. The concept of horizon can be expressed:

{ }( , ) :xH H Rδ δ′= = ∈ − ≤x x x x (1)
where δ is the radius of Hx.

In problems based on Fourier’s law, it is assumed that the heat flux fT between points 
x and x′ is a function of only the temperature difference between these two points, and the heat 
conduction equations for the BB-PD model are:

( ) ( )Tt k T t= − ∇q x, x, (2)

( , ) ( , , , , )d ( , )
x

T b
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T tc f T T t V S t
t
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( ) ( , , , , )d
x

T
H

Q t f T T t V ′′ ′= ∫ xx, x x (4)

where q is the heat flux vector, kT – the thermal conductivity, ∇T – the temperature gradient, 
ρ and c are the density and specific heat capacity, respectively, dVx′ – the infinitesimal volume 
linked to point x′, Sb – the heat generated by the heat source per unit time and unit volume, and 
Q – the heat flow.
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As shown in fig. 1, points x and x′ interact 
through a thermal bond. The ξ represents their 
relative position vector:

′= −ξ x x (5)
The heat flux fT between points x and x′ 

can be expressed [27]:
 	

( , , )( , , , , )T T
tf T T t τκ

ξ
′

′ ′ =
x xx x (6)

( , , ) '( , ) ( , )t T t T tτ = −x' x x' x (7)
where κT is the micro thermal conductivity. 
Based on the temperature field with a linear 
change, Oterkus et al. [28] derived expressions 
for the micro thermal conductivity in 2-D space 
through an equivalent analysis of the PD ther-
mal potential and classical thermal potential at 
certain points:

3

6 T
T

k
h

κ
δ
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The PD for heat conduction based on non-Fourier’s law

The DPL model proposed by Tzou [11] is introduced into the theoretical framework 
of the BB-PD heat conduction model:

( , ) ( , ), 0,  0q T T q Tq t k T tτ τ τ τ+ = − ∇ + > >x x (9)
Equation (4) can be re-written:

( , ) ( , , , , )d
x

q T T
H

Q t f T T t Vτ τ ′′ ′+ = +∫ xx x x (10)

where τT and τq are the phase lags of the temperature gradient and heat flux vector, respectively. 
When τT = 0, the DPL model degenerates into a wave model [35]. When τT = τq = 0, it degener-
ates into a Fourier heat conduction model.

The non-Fourier heat conduction model of the BB-PD can be obtained by the first-or-
der Taylor expansion of the function terms concerning t on the left- and right-hand sides of  
eq. (10):
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Figure 1. Schematic of PD for heat conduction
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Numerical implementation

Discretization

A quadrature method was adopted to 
solve eq. (11). As shown in fig. 2, the entire 
model is uniformly dispersed into multiple sub-
domains, and the temperature at each subdo-
main is considered a constant. Heat flows from 
the geometric center point of the high tempera-
ture subdomain to the geometric center point 
of the low temperature subdomain, and the dis-
tance between any two center points is Δx. At 
a certain time, t, the volume integration in eq. 
(11) can be replaced:
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where i is the material point of interest, N – the total number of subdomains within the horizon 
of point i, and Vj – the volume of the subdomain at point xj.

For the material points on the horizon boundary, the node volume should be corrected 
[27]:
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where d is half of Δx.
Equation (12) is solved using the explicit central-difference time integration tech-

nique:
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were n is the number of time steps and ∆t – the time step. According to Wang et al. [35], ∆t 
should satisfy:
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Boundary conditions

The boundary conditions in a PD heat conduction problem can be the temperature, 
heat flux, radiation, and conduction. As shown in fig. 3, the region of the studied material 

Figure 2. Diagrammatic sketch of discretization
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is Ω, and the temperature boundary condition 
should be applied to the virtual boundary-lay-
er ΩT, which is outside the real surface of the 
material, and its depth is equal to the size of the 
PD region δ [27]. The other three temperature 
boundary conditions can be directly applied to 
the boundary within the real material area Ω, 
that is, ΩH, ΩR, and ΩC in fig. 3, and the depth is 
the discrete spacing Δx.

In this study, the boundary conditions of 
only the temperature and heat flux were con-
sidered:

,   i bt TT T i= ∈Ω (17)

,   i bt Hi= ∈Ωq q (18)
where i represents the ith material point, Tbt – 
the boundary temperature, and qbt – the heat 
flux at the boundary.	

If no condition is applied at the boundary, that is, when the boundary is free, the heat 
flux in the boundary-layer region ΩF is 0:

' 0,   n
i Fi= ∈Ωq (19)

where n′ is the normal vector to the boundary surface.

Model validation

To verify that the PD model established in this study can effectively simulate the 
heat conduction in continuous and discontinuous materials, the heat transfer in a homogeneous 
square plate (containing pre-existing cracks) subjected to thermal shock load was simulated. 
The results were compared with those obtained by Tehrani et al. [36] and Madenci and Oterkus 
[27] using other numerical methods. Figure 4 shows the geometric model of a homogeneous 
square plate. Table 1 shows the numerical parameters.

Figure 4. Geometric model of a 2-D homogeneous square plate;  
(a) without pre-existing crack and (b) with pre-existing crack

Figure 3. Boundary-layer with the temperature, 
heat flux, radiation, and convection
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Table 1. Parameters of a 2-D homogeneous square plate model
Parameter Value Parameter Value

Length × width (L×D) 10 m × 10 m Density, ρ 1 kg/m3

Thickness, H 0.02 m Number of points in x- and y- directions 500 × 500
Crack length, Hf 6 m Point spacing, ∆ 0.02 m

Specific heat capacity, c 1 J/kg/K Radius of horizon, δ 3.015∆
Thermal conductivity, kT 1 W/m/K Time step, ∆t 0.0005 second

The initial and boundary conditions are:

2

( , , 0) 0

( 0, ) 5 e , ( 10, ) 0, 0

( , 5) 0, 0

t

T x y t
TT x t t x y t
x

T x y t
y

−

= =
∂

= = = = >
∂

∂
= ± = >

∂

(20)

Figure 5 shows the results of the tempera-
ture distribution on the square plate at y = 5 m  
without any pre-existing crack at t = 3 seconds,  
t = 6 seconds and t = 9 seconds, as measured 
using the PD and BEM [36]. The wave prop-
agates from left to right and gradually widens 
as it propagates. The temperature first increases 
and then decreases along the x-axis direction. 
The peak temperature decreases gradually as 
the wave propagates, however, it decreases 
more gradually along the x-axis. The prediction 
results of the PD and BEM are consistent.

Figure 6 shows the results of the tempera-
ture distribution at y = 5 m on a square plate 
with a pre-existing crack, obtained using the 
PD and FEM [27] under different crack ther-
mal conductivity values with 0, 0.05, and 0.1 
W/m/K. Compared with the square plate with-
out any crack, the slope of the temperature 
curve at the discontinuity (x = 5 m) is greater, 
that is, the temperature gradient at the crack is 
higher. The temperature gradient decreases with 
the increase in kTC, however, the decreasing 
rate reduces. The simulation results of the PD, 
BEM, and FEM are consistent, demonstrating 
that the PD model employed in this study can 
effectively simulate the heat conduction in con-
tinuous and discontinuous materials.

Figure 5. Temperature distribution at y = 5 m 
on a square plate without pre-existing crack, 
obtained using the PD and BEM [36]

Figure 6. Temperature distribution on a plate 
with a pre-existing crack at y = 5 m
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Heat conduction in a plate with  
adiabatic cracks

As shown in fig. 7, the dimensions of the 
rock plate are 1 m × 1 m. The plate contains two 
adiabatic cracks ① and ②, each with a length of 
0.3 m and located 0.3 m away from the left and 
right boundaries of the plate. The included angle 
between crack ① and the positive direction of 
the x-axis is 60°, and the two cracks are sym-
metrically distributed. The initial temperature is 
0 °C, the left and right boundaries are subjected 
to thermal shock with magnitudes of 200 °C and 
−200 °C, respectively, and the heat flux density 
of the upper and lower boundaries is 0. The rock 

plate is discretized into 100×100 material points, node spacing ∆x = 0.01 m, time step ∆t = 
1×10−6 seconds, and the other parameters are the same as those listed in tab. 1.

Effect of phase lags 

Given the lack of reliable experimental value of the thermal relaxation time for rocks 
[37, 38], four representative phase lag values (2, 0.2, 0.02, and 0.002 seconds) were selected to 
cover different states of the heat conduction behavior.

Figure 8 shows the temperature field distribution of the plate at 0.1 second under 
different τq and τT values. Each row represents a different τq value, and each column represents 
a different τT value. By comparing the diagrams of different columns in the same row, it can be 
found that when the phase lag τT of the temperature gradient decreases from 2 seconds to 0.002 
seconds, the heat transfer rate gradually decreases. This phenomenon is evident when the phase 
lag τq of the heat flux is 2 seconds or 0.2 seconds, whereas when τq is 0.02 seconds or 0.002 
seconds, the effect of τT on the heat transfer rate cannot be observed directly from the diagram.

When τq is 2 second, the heat transfer rate is low and the effect of crack is not reflected. 
When τq is 0.02 second or 0.002 second, or when τq is 0.2 second and τT is 1 second, it can be 
seen that the high/low temperature region is distributed along the crack, the isotherm is concen-
trated near the crack tip, and the discontinuity of heat conduction is significant, which is similar 
to the result obtained by Wang et al. [35].

Figure 9 shows the temperature field distribution at 0.1 second when τT = 0. Combined 
with figs. 8 and 9, it can be found that τq plays a major role in the heat transfer. The lower the 
τq value, the faster the heat transfer. When τq decreases to a certain value (0.2 second), the dis-
tribution law of the temperature field is related to the relative magnitudes of τT and τq. When  
τT > τq, the temperature distribution is dominated by τq, the heat propagation speed is high, and 
the temperature field shows evident discontinuous characteristics. When τT ≤ τq, the heat con-
duction speed is low, and the influence of crack on the heat conduction is not reflected.

To more specifically study the influence of τq and τT on the heat conduction, fig. 
10 shows the temperature curve at measuring Point A (0.25, 0.75) with respect to time. In  
fig. 10(a), as τq (= 1 second) is significantly greater than 0.1 second, the temperature increases only 
when τT = τq, and the increase is in a narrow range of 5.4 × 10−6 °C. The relative trend in the tem-
perature curves under different τT values also appears when τq is 0.2 second, fig. 10(b). The differ-
ence is that when τT = 1 second, thermal diffusion is evident, and the temperature reaches 200 °C 
at 0.086 second, whereas in other cases where τT ≤ τq, the heat transfer rate is relatively low. In fig. 

Figure 7. Geometric model of a rock plate 
with adiabatic cracks
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10(c), when τq = 0.02 seconds, the fluctuation characteristics of heat conduction are evident, and 
the greater the τT value, the faster the heat transfer, the higher the temperature peak, and the wider 
the fluctuation range, consistent with the results obtained by Narasimhan and Sadasivam [5]. In  
fig. 10(d), when τq = 0.002 seconds, the heat propagation mode tends to follow the Fourier’s 
heat conduction law, fig. 10(e), and the lower the τT value, the closer it is.

A general rule is evident in figs. 10(a)-10(d), with the increase in τT, the higher the phase 
lag of the temperature gradient, the higher the temperature at Point A at the same point in time. 
However, fig. 10(d) shows that the long-term response is the same under different τT conditions, 
and it finally tends to the steady-state of the same value. (When τq = 2 seconds, 0.2 seconds,  
0.002 seconds, 0.0002 seconds, and 0 seconds, the corresponding final constant temperature is 
79.0 °C, 78.3 °C, 77.3 °C, 77.2 °C, and 77.1 °C.)

Figure 8. Temperature field distribution at 0.1 second under  
different τq and τT values

Figure 9. Temperature field distribution at 0.1 second when τT = 0
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Figure 10. Temperature change curve at Point A under different τq and τT values; (a) τq = 2 s,  
(b) τq = 0.2 s, (c) τq = 0.02 s, (d) τq = 0.002 s, (e) τq = τT = 0, and (f) τT = 0

When τT = 0, fig. 10(f), the DPL model degenerates into a hyperbolic heat conduction 
model. When τq is 2 second or 0.2 second, the heat transfer rate is low, and the temperature 
change at Point A is small. When τq = 0.02 seconds, the temperature at Point A rises first and 
then fluctuates. When τq is 0.002 second or 0 second, the temperature at Point A changes in the 
form of a parabola, and when τq = 0.002 seconds, the temperature in the initial stage is slightly 
lower than that when τq = 0 seconds. This is because the delay in the heat flux decreases the rate 
of heat diffusion. However, as time progresses, the influence of τq becomes increasingly less, 
and the temperature curves of the two tend to coincide.
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Effect of the degree of homogeneity

In practical engineering, many materials are heterogeneous, such as rocks and con-
crete. The heat conduction conditions at each point in these materials may be different. In pre-
vious studies, some researches have found that Weibull distribution can be used to describe the 
heterogeneity of rocks and concrete [39, 40]. Therefore, Weibull distribution is used to describe 
the heterogeneous characteristics of the thermal conductivity of materials in this study:

 	1

0 0 0

We( ) exp
r r

r s ss
s s s

−     
 = −   
     

(21)

where s is the distribution parameter value satisfied by each point, s0 – the average value of the 
parameter s, and r – the homogeneity of the material structure.

Assuming that the thermal conductivity, k, at each point in the material obeys the 
Weibull distribution function with a mean value of 1, the heat conduction behavior when r = 2, 
5, 10, and 100 was simulated. Figure 11 shows the probability density map of Weibull distri-
bution function when k = 1. Figure 12 shows the thermal conductivity distribution on the plate 
with different r values. Combined with figs. 11 and 12, it can be seen that when scale parameter 
is a constant, the lower the m value, the more discrete the distribution of the thermal conductiv-
ity, the greater the m value, the closer the thermal conductivity is to the mean value.

Figure 11. Probability density map of Weibull distribution function; (a) r = 2 and 5  
and (b) r = 10 and 100

Figure 12. Thermal conductivity distributions under different degrees of homogeneity

It is assumed that τq = 0.02 seconds and τT = 2 seconds. Figure 13 shows the tempera-
ture field distribution at 0.1 second under different homogeneity conditions. When r = 2, the 
heterogeneity of the plate is the strongest, and the temperature field distribution is the most 
irregular. There are evident abnormal values in the left red high temperature (LRHT) region 
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and the right blue low temperature (RBLT) region due to the heterogeneity of the thermal con-
ductivity. In other cases, the LRHT and RBLT regions remain symmetrically distributed.

Figure 13. Temperature field distributions under different degrees of homogeneity

Figure 14 shows the temperature change curve at Point A with respect to time un-
der different homogeneity conditions. Regardless of the τq value, the temperature at the same 
point in time decreases with the enhancement in the heterogeneity. Moreover, fig. 13(a) shows 
that when r = 2, 5, 10, and 100, the time of the first peak is 0.038 second, 0.0303 second,  
0.029 second, and 0.028 second, respectively. That is, the stronger the heterogeneity, the later 
the appearance of the temperature peak. Figure 13(b) shows that the temperature values under 
various homogeneity conditions are the same after approximately 0.07 second. That is, the en-
hancement in the heterogeneity temporarily reduces the temperature value at Point A. However, 
under the action of relatively long-term heat conduction, the degree of homogeneity will not 
have a significant impact on the temperature value at Point A.

Figure 14. Temperature change curve at point A under different degrees of homogeneity;  
(a) τq = 0.02 s, τT = 2 s and (b) τq = 0.002 s, τT = 2 s

Conclusions

In this work, a heat conduction model within the framework of the BB-PD theory was 
derived by introducing the DPL model. On this basis, the effects of phase lag and degree of 
homogeneity on the heat conduction behavior in discontinuous heterogeneous materials were 
studied. The main conclusions are as follows.

yy The derived PD heat conduction model can effectively simulate the non-Fourier’s heat con-
duction process in discontinuous materials; this was confirmed by comparing the simulation 
result of a homogeneous square plate with pre-existing cracks subjected to thermal shock 
load and the theoretical result of a 1-D model of a human tissue with blood perfusion.
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yy The phase lag τq of the heat flux plays a major role in the heat transfer. When τq is constant, 
the heat transfer rate increases with the increase in the phase lag τT of the temperature gra-
dient.

yy The distribution law of the thermal conductivity based on the Weibull function can well re-
flect the heterogeneity of materials. For a specific point, the heat transfer rate may increase 
with the increase in the heterogeneity in a short duration.

yy The distribution shape of the temperature field is dominated by crack characteristics, and the 
influence of cracks on the temperature field distribution is mainly reflected in the area near 
the crack end. For the temperature at a specific point, although τT may have a positive cor-
relation in the short term, and the heterogeneity may have a negative correlation, the influ-
ence of the aforementioned factors becomes increasingly weaker after a relatively long time.
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Nomenclature
c	 – specific heat capacity, [(Jkg–1)K–1]
fT	 – heat flux
Hx	 – the horizon of point x
kT	 – thermal conductivity
n	 – the number of time steps
Q	 – heat flow, [Wm–3]
q	 – heat flux vector
Sb	 – heat source, [Wm–3]
T	 – temperature, [°C]
t	 – time, [second]
∆t	 – time step, [second]
V	 – volume, [m3]

Greek symbols

δ	 – radius of the horizon, [mm]
κT	 – micro thermal conductivity
ρ	 – density, [kgm–3]

τ	 – temperature difference, [°C]
τq	 – phase lag of the heat flux vector, [second]
τT	 – phase lag of the temperature gradient, [second]

Acronyms

BB-PD	 – bond-based peridynamics
BEM	 – boundary element method	
CV		 – Cattaneo-Vernotte
DPL	 – dual-phase-lag
FEM	 – finite element method
FVM	 – finite volume method
LRHT	 – left red high temperature
NMM	 – numerical manifold method
OSB-PD – ordinary state-based peridynamics
PD		 – peridynamics
RBLT	 – right blue low temperature
XFEM	 – extended finite element method
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