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Although its uninterrupted supply is essential for everyday life, the electricity oc-
casionally experiences disruptions and outages. The work presented in the cur-
rent paper aims to initiate the research to design a strategy based on advanced 
approaches of algebraic topology to prevent such malfunctions in a power grid 
network. Simplicial complexes are constructed to identify higher-order structures 
embedded in a network and, alongside a new algorithm for identifying delegates 
of the simplicial complex, are intended to pinpoint each element of the power grid 
network to its natural layer. Results of this methodology for analysis of a power 
grid network can single out its elements that are at risk to cause cascade problems 
which can result in unintentional islanding and blackouts. Further development of 
the outcomes of research can find implementation in the algorithms of the energy 
informatics research applications. 
Key words: algebraic topology, simplicial complexes, complex systems,  

power grid network, power grid redundancy

Introduction

Prevention of damages and blackouts they cause put a challenge and efforts on the 
development of reliable methods in energy informatics research which applies thinking and 
skills of information systems to increase energy efficiency, stability, and sustainability, with the 
aim to provide reliable power grids with an uninterrupted supply, transitioning at the same time 
toward the smart power grids. In order to make electricity widely and reliably accessible, it is 
necessary to have an infrastructure resistant to severe disruptions or unintentional islanding - an 
event where part completely separates from the rest of the power grid network and continue 
running. Non-etheless, power interruptions and power outages mostly occur due to equipment 
failures, hence causing the blackouts in most extreme scenarios. Furthermore, the malfunction 
and low reliability of the power grid indirectly leads to the fragility of other technological net-
works, which are highly dependent on it. Thus, disturbances in the functioning of the power 
grid network can have serious implications on everyday life, making all attempts to develop 
strategies to prevent, or when a problem happens to overcome, are of vital importance.

The work presented in current paper is motivated by the tendency to prevent a vulner-
ability of the power grid network and hence contribute the efficient energy management. In this 
context, the aim is to introduce a novel approach, based onols originating from the topological 
analysis of data, to the study of failure of the power grid network and contribute to the devel-
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opment of prevention strategies. So far research in complex networks was mostly based on the 
methods originating from the graph theory [1], with some recent applications of the topological 
data analysis [2]. Topological analysis of data, as a set of tools, is drawing an attention of the 
wide variety of practitioners, from research scientists to industry. Although there are attempts 
in applications of algebraic topology, in particular persistent homology [3] on power grid net-
works [4], in this paper we are extending an interest in less studied structures which are charac-
terized by the connectivity of mesostructures. Namely, unlike commonpological approaches to 
datasets and complex networks, which are mostly based on the calculation of Betti numbers [3], 
that is higher-dimensional holes within the structure, here the objects of interest are non-trivial 
higher-dimensional chains of connectivity that are responsible for the system’s functioning.

Properties of power grids are well studied by applying complex network quantities, in 
particular with an aim of considering the effects caused by the power failures. For example, in 
order to prevent the worst scenarios that can lead to cascading failures in a power grid, one must 
understand the nature of grid vulnerability. A good insight into the current state of the grid and 
potential weaknesses can be identified through the use of different static and dynamic models to 
predict potential cascading failure scenarios in grids [5]. Similarly, Nesti et al. [6] approached 
the modelling of blackouts of different sizes through the use of graphs with heavy-tailed sinks 
that represented the power demand from users and created a model of Germany’s power grid 
that linked scale-free blackout sizes with scale-free city sizes. On the other hand, Carreras 
et al. [7] created a dynamical numerical model for blackouts in power transmission systems 
with minimal implementation and assumption of uniformity of the components throughout the 
system, with an idea to further expand it through the introduction of non-homogeneous com-
ponents. European power grids are studied in [8], and modeled as the weighted graphs, with a 
focus on their topology and scalability. Self-organized criticality is studied by Zhao et al. [9] 
to explain the dynamic behavior and investigate the China power grid blackouts, targeting the 
small disturbances in the network that may trigger the chain reactions. Finally, Pagani et al. 
[10] reviewed the current state of the power grid studies performed by the statistical tools of 
complex network analysis in different states and regions over the world. The frequently studied 
grid infrastructure with these tools, at the time of review, was located in the USA, most of the 
European Union countries, China, and India.

As a case study, the US Power Grid network [11] is considered, where elements and 
their connections play different roles in the network s functioning. Due to the lack of infor-
mation about the exact roles of nodes within the considered power grid, we have artificially 
selected the set of delegates which moves up to higher hierarchical levels. Namely, the goal is to 
reconstruct the latent hierarchical structure under selection criteria that distinguish node s par-
ticipation in the formation of non-trivial structure. As the criteria for delegate nodes selection 
the so called topological dimension [12] is chosen and it quantifies the node s influence on their 
local higher-order neighborhoods. Higher-order structural properties of the US Power Grid 
network have already been considered in [13], where the calculated quantities displayed the 
statistical invariance. On the other hand, regarding the power grid vulnerability [14], research 
so far is characterized by an interest in a lack of robustness and resilience of a system, and was 
focused on considerations of random, as well as selective failures, through the percolation the-
ory rooted in numerical simulation of different scenarios.

Results suggest that the underlying network has an internal structure of the most sig-
nificant delegates, see section Methods, rather with higher-order aggregation than at the level 
of the initially obtained simplicial complex from a mathematical graph. A node that naturally 
originates on a lower hierarchical level can be found mixed within the same simplex with nodes 
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that belong on a higher hierarchical level, and vice versa, presenting the potential problem, 
hence indicating roads towards future research. Generally, the outcomes of presented research 
contribute to the energy informatics research, as well as to building smart grids [15]. The pro-
posed approach offers a broad framework for applications, not necessarily restricted to power 
grid networks, but also such as for example, the thermal storage systems [16].

Phenomenological background and its modelling

The underlying mathematical graph of the US Power Grid network is formed by nodes 
with different roles in the network s functioning. These various physical objects can be distrib-
uted on different levels in the hierarchical organization of a power grid network, fig. 1. Due 
to the authors lack of knowledge on specific roles of nodes in the considered US Power Grid 
network, and with the aim to reconstruct the inherent hierarchical organization, the topological 
criteria are applied in order to distinguish and select the influential vertices, termed delegates. 
Using selected delegate vertices in a clique complex, after a few iterations, different hierarchi-
cal levels are extracted. Hence, when disruption occurs, the scope of malfunction depends on 
the position of the level and the structure that is formed there.

Figure 1. Depiction of a segment of a layer-architecture of an arbitrary 
power grid network; dashed circles display the same layer; every 
type of node is found at the layer to which it naturally belongs or it 
may cause disruption in network stability and sustainability, so the 
proposed layer-architecture may be of great significance

Methods

The notions of basic, and derived, quantities that will be introduced within this sec-
tion are originating from the mathematical field of algebraic topology, more specifically, the 
Q-analysis [17, 18]. Let V = {v1, v2,...vk} and S = {s1, s2,...sl} be a two sets assembled by k and l 
elements, respectively, and suppose that exists a binary relation, λ, that by some rule associate 
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elements of sets V and S. In other words, an element si from the set S is λ-related to some subset 
vj0, vj1,..., vjq from the set V, and vice versa, an element vj is λ–1-related to some subset si0, si1,..., sip 
from the set S, where λ–1 is the inverse of relation λ. Consequently, the set S and relation λ define 
a subset C of the power set P(V) of V, that is C ⊆ P(V), and each element {vj0, vj1,...vjq} ∈ C,  
(q ≤ l), can be assigned to an element si ∈ S, labeled like siλvj0, siλvj1, ..., siλvjq. The elements 
of set C will be called simplices labeled by the relation-associated elements of set S like σ(si), 
whereas the elements from set V will be called vertices. This notation emphasizes the dis-
tinction between elements from set S and set of elements C to which they are λ-related. Fur-
ther, elements σ(si) are called q-dimensional simplices or just q-simplices, labeling them like  
σq(si) = ⟨vj0, vj1,...vjq; λ⟩. The dimension of q-dimensional simplex is equal to the number of as-
sociated vertices minus 1. The r-dimensional face of a q-simplex is its subset of r + 1 elements, 
where r ≤ q, and it is also a simplex. As a result, sets S, V and relation λ build a mathematical 
object called the simplicial complex KS(V, λ) and it represents a collection of all simplices, to-
gether with all their faces, hence building the structure by attaching simplices via their mutual 
faces. Dimension of a simplicial complex is determined by the maximal dimension of simplices 
in the simplicial complex. In geometrical representation, simplices are displayed as q-dimen-
sional polyhedra, e.g. 0-simplex is represented as a point, 1-simplex as an edge, 2-simplex as a 
triangle, and 3-simplex as a tetrahedron, etc.

Mutual q-face between two simplices σr (i) and σp (j), having dimensions r and p, re-
spectively, is a subset of their common q + 1 vertices, where q ≤ r, p, and they also share 
(q – 1)-, (q – 2)-, ..., 0-face also. The latter property assigned to these two simplices is called 
q-nearness. The degree of connectivity defined by the q-connectedness is the chain of simplices 
between any pair of simplices in the chain of simplices such that any adjacent pair of simplices 
share a mutual face, is determined by the lowest q-nearness, which is the smallest dimension of 
shared face. The q-connectedness property between simplices in the simplicial complex K gen-
erates the relation that satisfies mathematical equivalence ϕq in a sense that it displays reflexiv-
ity, symmetry, and transitivity properties. Therefore, the subcomplex Kq of simplicial complex 
K is a set of all simplices with dimension greater or equal to q and the relation ϕq partitions Kq 
into equivalence classes of simplices based on the q-connectedness. The number of q-connect-
ed components, or q-connectivity classes, represents the entries of Q-vector [17], or the first 
structure vector, and it is given as a vector starting from the largest q dimension in descending 
order of entries: 

{ }dim( ) dim( ) 1 1 0= K KQ Q Q Q−Q  (1)
 The number of simplices that have a dimension greater or equal to q represents the 

entries of the second structure vector N, and it is written in the same descending order as the 
Q-vector starting from the largest dimension: 

{ }dim( ) dim( ) 1 1 0= ...K KN N N N−N (2)

 The third structure vector describes the degree of connectedness at all dimensions of 
simplicial complex and it is defined like: 

ˆ = 1 q
q

q

Q
N

−Q (3)

Structure vectors describe the global properties of a simplicial complex revealing its 
geometrical and combinatorial aspects, as well as behavior. On the other hand, in order to char-
acterize immediate environment and, inner hidden structure of a single simplex, other quantities 
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can be also derived within the mathematical framework of Q-analysis. One of these quantities is 
the so called node s Q-vector [12], Qi, that describes the environment of vertex i in a simplicial 
complex and it is defined: 

{ }dim( ) 1 1 0dim( )
= ...i i i i

i KK
Q Q Q Q−Q (4)

where entries Q iq enumerate the number of q-simplices that contain the node i. Topological di-
mension dimQi = ∑ qQ iq of vertex i is derived in order to quantify the total number of simplices 
in which the vertex i participates. Term dimension originates from conjugate complex K–1 [17, 
18], in which vertices and simplices have swapped roles – vertices are simplices and vice ver-
sa, and in conjugate complex the dimension of simplex associated to node i from underlying a 
simplicial complex is equal to the topological dimension of node i, dimQi = σ(vi).

Alongside the aforementioned, in this work two important properties of a simplicial 
complex are known as eccentricity and vertex significance of simplex [19] are calculated. Let us 
define q̂  as a dimension of a q-simplex σ (si) and q̌  as a dimension at which it is joint to connec-
tivity class for the first time, i.e. the dimension of a minimal face that attaches simplex σ (si) to 
other simplices. Now, eccentricity can be defined: 

[ ] ˆ
( ) =

ˆ 1
q qecc i
q

σ −
+



(5)

which takes values between 0 and 1 and quantifies the degree of integration of a simplex in a 
complex. High values of eccentricity suggest low integration of simplex in local environment, 
whereas low values imply high integration of simplex in the simplicial complex. On the other 
hand, the vertex significance quantifies the significance of simplices with the respect to vertices 
that build them. Therefore, let weight θi be the number of simplices that contain the vertex i, and 
Δ(i) = ∑ j∈iθj represents the sum of θj for simplex σ (i), where j goes through all vertices in σ (i). 
Vertex significance of simplex is defined: 

[ ] ( )( ) =
max( )

ivs iσ ∆
∆

(6)

where max(Δ) is the maximal value from Δ, and it represents the normalization constant so that 
vertex significance of simplex has maximal value 1, i.e. most significant simplex has vs = 1. 

In this paper, the inquiry of the considered phenomena is divided in two parts, one 
considering graph theory measures and the second part represent algebraic topology analysis of 
so called clique complex [20] constructed from the underlying mathematical graph G (object 
which consider only pairwise interaction between vertices). In graph theory, a mathematical 
graph is presented via the adjacency matrix A(G) which is a square matrix (n × n) with rows 
and columns presenting vertices and its elements are commonly Aij = 1 if vertices i and j are 
connected by an edge, otherwise Aij = 0 (if an edge exists, element of adjacency matrix can also 
be the weight of an edge). Measures from the graph theory that are used are: n is the number 
of vertices in mathematical graph, e – the number of edges in mathematical graph, ⟨k⟩ – the 
average degree of nodes (vertex s degree – total number of edges connected to a node), cc – the 
average clustering coefficient (the clustering coefficient is calculated as the ratio between the 
number of triangles around a vertex and the maximum number of triangles that could possibly 
be formed around that same vertex), d – the diameter (maximal distance between any pairs of 
vertices), ⟨p⟩ – the average path length (vertex s path length - average distance from a vertex to 
all other vertices), and modul – the modularity (represents a measure of the structure of mathe-
matical graph – determines the strength of division of a graph into communities or subgraphs).
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Adjacency matrix is defined by binary relation between vertices of a mathematical 
graph. On the other hand, the incidence matrix Λ[K(G)] which defines the clique complex is the 
n × m matrix, where m is the number of cliques in the underlying mathematical graph. In the 
clique complex K(G), vertices are the same as vertices of the mathematical graph, G, and sim-
plices are identified as cliques (maximal fully connected subgraphs) which also represents the 
relation that form clique complex from the binary related mathematical graph. Bron-Kerbosch 
algorithm [21] is used for the detection of maximal cliques in the underlying mathematical 
graph.

For the purpose of the presented research, new criteria for layer-reconstruction of 
a simplicial complex will be introduced. A delegate of a simplex is a vertex with the highest 
value of the node’s topological dimension. After determining all delegates within an underlying 
simplicial complex, a higher layer of a simplicial complex is constructed by connecting those 
delegates whose underlying simplices share a mutual face. This criterion can be applied mul-
tiple times in order to determine the inherent layers of vertices and simplices in an underlying 
complex.

Results

The network considered in this paper is the power grid of the Western States of the 
USA initially studied in [11], whereas the dataset is openly available in the KONECT project*. 
Nodes are considered to be either as a generator, a substation or a transformer units, while links 
represent power supply lines. The network is formed by n = 4941 nodes and e = 6594 edges. 
As previously mentioned, different kind of elements in power grid network naturally operate at 
different hierarchical layers, hence it is preferable to identify them. In order to do that, the first 
step is to construct a clique complex from the underlying mathematical graph of the power grid 
network. Since this network has three different types of nodes, three iterations of algorithm are 
applied to extract delegates, fig. 2. Table 1 presents graph theory measures mentioned in the 
previous section for the original, as well as mathematical graphs of delegates after three itera-
tions when the criteria for layer-reconstruction is applied.

Figure 2. (a) Original power grid network from [11], (b)-(d) networks after 1-3  
iterations of algorithm for creating networks of delegates, respectively

These results suggest that the size of network is shrinking through keeping only nodes 
that should exist at higher layers. From the presented results, the number of links stays more 
or less the same, which means delegate nodes that are connected at higher layers are connected 
via other nodes from lower layers and they represent some kind of binders in the underlying 
network. In this case, generators are some kind of network binders, but there is no strongly 
distinguishable community structure among them, as the modularity for network D3 suggests.

* http://konect.cc/networks/opsahl-powergrid/
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Table 1. Common network measures for the original power  
grid networks and delegate networks after 1, 2, and 
3 iterations of layer-reconstruction

  Original  D1  D2  D3 
n  4941  2373  926  298 
e  6594  7710  6462  5271 

 ⟨k⟩  2.67  6.50  13.96  35.38 
cc  0.11  0.52  0.63  0.73 
d  46  25  13  6 

 ⟨p⟩  18.99  10.05  5.40  2.73 
modul  0.93  0.9  0.82  0.59 

 On the other hand, in the underlying original network, smaller communities are formed 
around generators and those clusters have denser inter-connection compared to the connection 
between clusters. From the tab. 2, it can be inferred that the values of clustering coefficient of 
these networks indicate strong pseudo-connection between nodes that belong to higher layers, 
that is generators and substations in D2 network, and among generators in D3 network even 
though they are not directly connected. The presence of those pseudo-connections between 
nodes that naturally exist on the same layer preserves the stability and sustainability of a power 
grid network and keeps it from creating unintentional islanding and severe disruptions in the in-
frastructure, hence having a role of some kind of bypass. When the random failure of a fraction 
of nodes occurs, it is likely that still active delegate nodes will take the role of connections that 
will keep the significant portion of the network in function.

Regarding the results obtained for structure vectors, fig. 3, it can be concluded that 
inner-connections and degree of connectedness increases as simplicial complexes progress to-
ward higher layers of the power grid network. First two simplicial complexes of the underlying 
network of delegates display small changes compared to the original power grid network. On 
the other hand, the structure of simplicial complex obtained in the last iteration reveals hidden 
properties that simplicial complexes in previous iterations do not possess, and it is another con-
firmation of the existence of previously mentioned pseudo-connections of generators. There-
fore, the network of delegates which may have a role of the network of generators presents a 
backbone of the power grid network. In this sense, the intertwine pseudo-connections, which 

Figure 3. First (a) and third (b) structure vectors of the power grid network and 
networks of delegates
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form bigger simplices, suggest high stability regarding disruptions and islanding in the infra-
structure. If there was a poor connection of the base of one power grid network, there would be 
a high risk of creation of unintentional islanding and blackout of parts of a power grid.

From the fig. 4, the simplicial complex of D3 network has less average eccentricity, 
and higher average topological dimension and vertex significance than networks at other 3 lay-
ers, as expected, and it is complementary to previous results. If carefully observed, topological 
dimension and vertex significance of simplices in simplicial complexes D2 and D3 have rapid 
decline intersecting D1around 500th and 200 th ranked node, respectively. This can suggest that 
some of the nodes and simplices constructed by these nodes, do not naturally belong to that 
layer, therefore, they should be restrained in lower layers. Tails of previous rankings demand 
further inspection because if node, that naturally lives on lower layers, is progressing to the 
higher layers as delegate, it can be the one that has potential of causing damage to the whole 
cluster to which it belongs, and therefore, the power grid network s integrity and stability.

Figure 4. Ranked topological dimension (a), vertex significance of simplex (b),  
and eccentricity (c) of the power grid network and networks of delegates

Conclusion and discussion

Results reveal latent embedment of the most significant delegates with higher-order 
aggregation than at the level of the initially obtained simplicial complex from an original net-
work. Thus, they represent the backbone of a power grid network, and higher-order clustering 
of the same delegates via pseudo-links refers to the high stability of the network.

Topological analysis of local architecture should classify structural layers where 
nodes naturally belong. The study of the tails of rankings and local properties of simplicial 
complex of delegates in a power grid network can reveal whether there are potential issues that 
can affect network stability when nodes are located at the inaccurate layer. In other words, if 
a node that naturally originates in a lower hierarchical layer is found mixed within the same 
simplex of delegates with nodes that belong on a higher layer, and vice versa, it would present 
a potential issue in power grid stability and can cause cascade disruptions ensuing blackouts 
and islanding. Therefore, this model and algorithm have great potential for testing power grid 
stability whether it is a network in construction or an original network, and can suggest nodes 
reconnecting in order to achieve a network with a long term stability and sustainability.
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