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In this paper, magneto-electrically induced vibration control of a magneto-elec-
tro-elastic plate in contact with fluid is studied by means of maximum principle. 
The performance index functional to be minimized at the predetermined control 
duration is considered as a modified kinetic energy of the magneto-electro-elastic  
plate and it is defined as a weighted quadratic functional of displacement and ve-
locity and also includes as a penalty function of the control force spent in control 
duration. Two numerical examples are presented and results indicate that intro-
duced control algorithm for damping the vibrations due to magneto-electric load 
on magneto-electro-elastic plate is very robust and effective. 
Key words: magneto-electro-elastic, vibration, optimal control,  

maximum principle 

Introduction and problem formulation

The definition, magneto-electro-elastic solid, is widely used to address to a kind of 
smart materials have capacity to transform reversibly their properties to respond external ex-
citation such as temperature, moisture, stress, electric or magnetic fields [1]. Since last two 
decades, magneto-electro-elastic (MEE) composites have gained great importance due to their 
ability of transforming one form of energy to another, having simple geometry and economic 
design and being useful in smart or intelligent structure applications [1]. Much studies are done 
for examining on several properties of MEE structures and they can be summarized as follows, 
but not limited to [2-12]. The original contribution of the present paper is that magneto-electri-
cally induced vibration control of a plate contacted with fluid is firstly studied by means of max-
imum principle in this paper. Specifically, the vibration suppression problem for damping the 
vibrations due to magneto-electric load on MEE plate is taken into account. In order to achieve 
the optimal control function, adjoint equation system and suitable terminal conditions are deter-
mined. Optimal control function is obtained by means of maximum principle, which converts 
to optimal control problem to solving an equation system subjected to initial-boundary-terminal 
conditions. The solution of the differential equation system is gained by means of computer aid 
and results are evaluated for two numerical examples and presented in the graphical forms. At 
the first, we consider a rectangular plate contacted with fluid, subject to the external magne-
to-electric load. Initially, the plate is assumed to be undeformed. The control problem is aimed 
to suppress the vibrations induced by magneto-electric load. The equation of the motion of the 
plate shown can be expressed [13]:
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4( ) ( ) = ( , , ) ( ) ( , )P f TTh M W D E M W P X Y T C T D X Yρ + + + + ∇ + (1)

where ρP is the mass density of the plate, h –  the thickness of the plate, Mf – the fluid added 
mass, D, E, and M are the constants, representing the plate rigidity, effective rigidities due to the 
presence of electricity and magnetism, respectively, W(X, Y, T) – the transversal displacement 
at ( , , ) = {( , , ) : ( , ) , (0, )}, = (0, ) (0, )fX Y T Q X Y T X Y S T T S∈ ∈ ∈ ×

  

  is an open bounded set with 
sufficiently smooth boundary ∂S̆, Tf – the terminal time, P̄(X, Y, T) – the magneto-electric load 
function with indicating the distribution of the force over the plate, ( )C T ∈ adC  is control func-
tion, adC – the set of admissible control functions, which are continuous and bounded functions, 
and D̄(X, Y) – the function showing the distribution of the control force over the plate:

	

2 2
2

2 2=
X Y
∂ ∂

∇ +
∂ ∂

Equation (1) is subject to the following boundary conditions:
(0, , ) = ( , , ) = ( ,0, ) = ( , , ) = 0W Y T W Y T W X T W X T  (2)

(0, , ) = 0, ( , , ) = 0XX XXW Y T W Y T (3)

( ,0, ) = 0, ( , , ) = 0YY YYW X T W X T (4)
and the initial conditions: 

0 1( , ,0) = ( , ), ( , ,0) = ( , )TW X Y W X Y W X Y W X Y (5)
Let L2(Q̆) denote the Hilbert space of real-valued square-integrable functions on the 

domain Q̆ in the Lebesque sense with usual inner product and norm defined:

	

2< , > = ( , , ) ( , , )d , = < , >
Q

Q x y t x y t Qρ ρ ρ ρ ρ∫


 

   

respectively. Along the paper, it is assumed that W0, W1, C̄, D̄, and P̄ are continuous and bound-
ed functions on the domain Q̄. For convenience, let us introduce the non-dimensional variables:

	

2 2 2

4 4

= , = , = , = , =
( ) ( )
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Substituting new parameters into eqs. (1)-(5), we obtain non-dimensional equation of 
motion given:

4 = ( , , ) ( ) ( , )ttw w P x y t C t D x y+∇ + (6)

subject to the following boundary conditions:
(0, , ) = (1, , ) = ( ,0, ) = ( ,1, ) = 0w y t w y t w x t w x t (7)

(0, , ) = 0, (1, , ) = 0xx xxw y t w y t (8)
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( ,0, ) = 0, ( ,1, ) = 0yy yyw x t w x t (9)
and the initial conditions: 

0 1( , ,0) = ( , ), ( , ,0) = ( , )tw x y w x y w x y w x y (10)

Optimal control problem

The objective of the control is the minimization of a given performance index at a ter-
minal time tf with a minimum expenditure of control force. The performance index is specified 
as the weighted dynamic response of the plate defined in terms of a quadratic functional of the 
deflection and its time derivative with the expenditure of the control energy added as a penalty 
term. The performance index is defined:

{ }2 2 2
1 2 3

0

( ) = ( , , ) ( , , ) d ( )d
t f

f t f
S

C w x y t w x y t S C t tµ µ µ+ +∫∫ ∫ (11)

where µi ≥ 0 for i = 1, 2, 3 are weighted constants and µ1+ µ2 ≠ 0. The first two terms on the 
right-hand side of eq. (11) are proportional to the kinetic energy of the plate and the last term 
measures the control effort that is consumed over [0, tf]. The optimal control of the plate im-
plies that the optimal control function C°(t) should be the solution of the minimization problem 
satisfies:

[ ]
( )

( ) = ( )min
C t

C t C t
∈

  
 

Cad
(12)

where eq. (12) is subjects to the state equation eq. (6) as well as the boundary and initial con-
ditions (7)-(10). 

Adjoint operator and maximum principle

Let us define the adjoint variable, v, and this adjoint variable v(x, y, t) satisfies:
4 = 0, 0 , 1, 0tt fv v x y t t+∇ ≤ ≤ ≤ ≤ (13)

subject to the boundary conditions: 

(0, , ) = (1, , ) = (0, , ) = (1, , ) = 0xx xxv y t v y t v y t v x t (14a)

( ,0, ) = ( ,1, ) = ( ,0, ) = ( ,1, ) = 0yy yyv x t v x t v x t v x t (14b)
and the terminal conditions: 

1 2( , , ) = 2 ( , , ), ( , , ) = 2 ( , , )t f f f t fv x y t w x y t v x y t w x y tµ µ− (15)

The maximum principle is stated as Theorem (Maximum principle): for the optimal 
control function ( )C t ∈ Cad , the corresponding optimal state function w°(x, y, t) = w(x, y, t, C°)  
satisfy eqs. (6)-(10) and the adjoint variable v°(x, y, t) = v(x, y, t; C°) satisfy eq. (13), boundary 
conditions eq. (14) and terminal conditions eq. (15). The maximum principle can be stated:

[ ; ] = [ ; ]max
C

t C t C
∈

 
Cad

(16)

where Hamiltonian is given:
2

3( ; ) = ( ) ( ) ( )t C C t G t C tµ− − (17)
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and

	

1 1

0 0

( ) = ( , ) ( , , )d dG t D x y v x y t x y∫∫
then

[ ] [ ], ( )C C C t≤ ∀ ∈  Cad (18)
Proof. Before starting the proof, let us introduce the following operator and its adjoint 

operator, respectively:
4( ) = ttw w wΨ +∇ (19)

* 4( ) = ttv v vΨ +∇ (20)
Also, let us define the deviations in w and wt: 

	 = and =t t tw w w w w w∆ − ∆ − 

The operator Ψ(Δw) = ΔC(t)D(x, y) is subject to the boundary conditions:

(0, , ) = (1, , ) = (0, , ) = (1, , ) = 0xx xxw y t w y t w y t w y t∆ ∆ ∆ ∆ (21a)

( ,0, ) = ( ,1, ) = ( ,0, ) = ( ,1, ) = 0yy yyw x t w x t w x t w x t∆ ∆ ∆ ∆ (21b)
and the initial conditions:

( , ,0) = 0, ( , ,0) = 0tw x y w x y∆ ∆ (22)

Consider the following functional:
*[ ( ) ( )]d = ( ) ( , )d

Q Q

v w w v Q v C t D x y QΨ ∆ −∆ Ψ ∆∫∫∫ ∫∫∫ (23)

The left side of eq. (23) can be written:

	 I1 + I2

where 

	
( ) ( ) ( )4 4

1 2= d , = dtt tt
Q Q

I v w v w Q I v w w v Q ∆ − ∆ ∇ ∆ −∆ ∇ ∫∫∫ ∫∫∫

Using the fact that:

	
( )1 = d d dt t

Q

I v w v w t x y
t
∂

∆ − ∆
∂∫∫∫

and making use of eq. (22) and terminal conditions eq. (15), I1 becomes:

1

2 1

= ( , , ) ( , , ) ( , , ) ( , , ) d d

= 2 ( , , ) ( , , )2 ( , , ) ( , , ) d d

f t f t f f
S

t f t f f f
S

I v x y t w x y t v x y t w x y t x y

w x y t w x y t w x y t w x y t x yµ µ

 ∆ − ∆ = 

 ∆ ∆ 

∫∫

∫∫
(24)

Using the boundary conditions eq. (21) and eq. (14), it is easy to verify by integration 
by parts:

4 4
2 = [ ( ) ( )]d = 0

Q

I v w w v Q∇ ∆ −∆ ∇∫∫∫ (25)
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Now, let us deal with the right side of eq. (23):

3 = [ ( , , ) ( ) ( , )]df
Q

I v x y t C t D x y Q∆∫∫∫ (26)

In view of eqs. (24) and (25), eq. (23) becomes:

2 1
0

{2 ( , , ) ( , , ) 2 ( , , ) ( , , )}d d = [ ( ) ( )d
t f

f t f f f
S

w x y t w x y t w x y t w x y t x y C t G t tµ µ∆ + ∆ ∆∫∫ ∫ (27)

Now, consider the difference of the performance index defined:

{ }2 22 2
1 2

22
3

0

[ ] = [ ] [ ] = ( , , ) ( , , ) ( , , ) ( , , )

d d d

f f t f t f
S

t f

C C C w x y t w x y t w x y t w x y t

x y C C t

µ µ

µ

   − − + − ⋅      

 ⋅ + −  

∫∫

∫

  



  

(28)

Expanding w2(x, y, tf) and w2
t (x, y, tf) in Taylor series about w°2(x, y, tf) andwt°2(x, y, tf), 

respectively, leads to:
22

1( , , ) ( , , ) = 2 ( , , ) ( , , )f f f fw x y t w x y t w x y t w x y t γ− ∆ +   (29a)
22

2( , , ) ( , , ) = 2 ( , , ) ( , , )t f t f t f t fw x y t w x y t w x y t w x y t γ− ∆ +   (29b)
where 

2 2
1 2= 2( ) higher order terms> 0, = 2( ) higher order terms > 0tw wγ γ∆ + ∆ +

Substituting eq. (29) into eq. (28) yields:

	

1 1

22
2 2 3

0

[ ] = { [2 ( , , ) ( , , ) ]

[2 ( , , ) ( , , ) ]}d d [ ]d

f f
S

t f

t f t f

C w x y t w x y t

w x y t w x y t x y C C t

µ γ

µ γ µ

∆ ∆ + +

+ ∆ + + −

∫∫

∫



 



From eq. (27) and because of µ1γ1+ µ2γ2 > 0, one observes:

	
[ ] 22

3
0 0

[ ] ( ) ( ) d ( ) ( ) d 0
t tf f

C C t G t t C t C t tµ  ∆ ≥ ∆ + − ≥  ∫ ∫ 

which leads to:

	
22

3 3( ) ( ) ( ) ( ) ( ) ( )C t G t C t C t G t C tµ µ≥  

that is 

	 [ ; ] [ ; ]t C t C≥ 

Hence, we obtain:

	 [ ] [ ], ( )C C C t≥ ∀ ∈  Cad

Taking the first variation of   in eq. (17), C(t) gives the optimal control function:

3

( )( ) =
2
G tC t
µ

−
 (30)
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To compute the control voltage C° in eq. (33), we need to evaluate v(x, y, t) in eq. (13) 
that requires the solution of the optimal state function w of eqs. (6)-(10) subject to the mixed 
terminal conditions eq. (15). The details of this computation are given in the next section.

Numerical results and conclusion

In this section, in order to indicate the effectiveness and capability of the obtained 
theoretical results in the previous sections, following system of partial differential equations is 
solved by means of mathematical software. 0 ≤ x, y, ≤ 1, 0 ≤ t ≤ tf :

1 1
4

3 0 0

( )= ( , , ) ( ) ( , ), ( ) = , ( ) = ( , ) ( , , )d d
2tt
G tw w P x y t C t D x y C t G t D x y v x y t x y
µ

−
+∇ + ∫∫ (31)

4 = 0ttv v+∇ (32)

(0, , ) = (1, , ) = ( ,0, ) = ( ,1, ) = 0w y t w y t w x t w x t (33)

(0, , ) = (1, , ) = ( ,0, ) = ( ,1, ) = 0xx xx yy yyw y t w y t w x t w x t (34)

0 1( , ,0) = ( , ), ( , ,0) = ( , )tw x y w x y w x y w x y (35)

(0, , ) = (1, , ) = (0, , ) = (1, , ) = ( ,0, ) ( ,1, ) = ( ,0, ) = ( ,1, ) = 0xx xx yy yyv y t v y t v y t v x t v x t v x t v x t v x t= (36)

1 2( , , ) = 2 ( , , ), ( , , ) = 2 ( , , )t f f f t fv x y t w x y t v x y t w x y tµ µ− (37 )

     
Figure 1. Un/controlled displacements  
at (0.5, 0.5) for Example 1

Figure 2. Un/controlled velocities  
at (0.5, 0.5) for Example 1

Before discussing the numerical results, take into account the optimal control function 
given by eq. (30) and focu the position of the µ3. The value of the µ3 is decreasing, the value of 
the C(t) is increasing, vice versa. The displacement and velocity are computed at the mid-point 
(x = 0.5, y = 0.5) of the plate. Terminal time is taken into account as tf = 0.5. The distribution 
function for the control function D(x, y) = 1. The control function is obtained by computing  
µ3 = 106 and µ3 = 10–6 for uncontrolled case and controlled case, respectively. Figures 1-4 
show the curves of un/controlled displacements and velocities of the plate plotted against time  
0 ≤ t ≤ tf with the weighted coefficients taken as µ1= 1, µ2 = 1. In the Example 1, the magne-
to-electric load function is taken as P(x, y, t) = e2t and the initial conditions are specified:

	 0 1= 2 sin( ) 2 sin( ), = 2 sin( ) 2 sin( )w x y w x yπ π π π
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Figure 3. Un/controlled displacements  
at (0.5, 0.5) for Example 2

Figure 4. Un/controlled velocities  
at (0.5, 0.5) for Example 2

The un/controlled displacement and velocity are plotted in figs. 1 and 2, respectively. 
In the Example 2, the magneto-electric load function is taken as P(x, y, t) = e2t and the initial 
conditions are specified as w0 = 0, w1 = x + y. The un/controlled displacement and velocity are 
plotted in figs. 3 and 4, respectively. 

Conclusion

In this paper, magneto-electrically induced vibration control of a MEE plate in con-
tact with fluid is considered and optimal control function is obtained by means of maximum 
principle, which transforms the control problem to solving a system of PDE systems linked 
by initial-boundary-terminal conditions. The system is solved by mathematical software and 
results are presented for two numerical examples. After observing the numerical resultsi, it is 
concluded that the deflection and the velocity of the vibrating plate, contacted with fluid and 
subjected to magneto-electric load, can be effectively damped out.
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