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Integral transformations have been used for a long time in the solution of differen-
tial equations either solely or combined with other methods. These transforms pro-
vide a great advantage in reaching solutions in an easy way by transforming many 
seemingly complex problems into a more understandable format. In this study, we 
used an integral transform, namely Kashuri Fundo transform, by blending with the 
homotopy perturbation method for the solution of non-linear fractional porous me-
dia equation and time-fractional heat transfer equation with cubic non-linearity.
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Introduction

Integral transforms are methods that facilitate us in solving complex problems en-
countered in many different fields for a long time. They transform the original domain of prob-
lems into another domain and makes complex problems more understandable. Then, the solu-
tion obtained by changing the domain with the inverse integral transform is mapped to the 
original domain [1].

Integral transforms are frequently used methods for solving linear and non-linear dif-
ferential equations. Especially in equations that are difficult to find the exact analytical solution, 
they are sometimes used alone and sometimes by blending them with another method. One 
of the equations, finding whose analytical solution is difficult to find, is fractional differential 
equations. The fractional calculus was first introduced by Leibniz [see in 2]. Then, fractional 
differential equations attracted the attention of many researchers with their extensive applica-
tions in many different fields. Researchers have used many different methods such as homotopy 
perturbation method [3-6], sinc methods [7-9], variational iteration method [10-12], Adomian 
decomposition method [13], Laplace decomposition method [14], homotopy perturbation trans-
formation method [15], etc. to solve these equations.

Non-linear heat equation called the porous media equation often occurs in non-linear 
problems of flows in porous media, heat and mass transfer, diffusion, boundary-layer theory, 
viscous fluids, biological systems, and other related fields. The aim of this study is to show that 
the solution using mixture of Kashuri Fundo transform and homotopy perturbation method [16, 
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17] over fractional porous media equation and a non-linear time-fractional heat transfer equa-
tion with cubic non-linearity is simple and understandable. 

Caputo fractional derivative

The Caputo fractional derivative of order α > 0 of a function f(x), x > 0 is defined 
[18-20]: 
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where Γ(.) is the Gamma function and Dα
t is called the Caputo derivative operator.

Kashuri Fundo transform method

We consider functions in the set F defined [21]:
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For a function belonging to the set F, the constant M must be finite number. The k1, k2 
may be finite or infinite. Kashuri Fundo transform denoted by the operator K(.) is defined [21]:

2

1 2
0

1[ ( )]( ) ( ) e ( )d , 0,
t

vK f t v A v f t t t k v k
v

−∞

= = ≥ − < <∫ (3)

Inverse Kashuri Fundo transform is denoted by [21]:
 	 [ ]1 ( ) ( ), 0K A v f t t− = ≥

Theorem (sufficient conditions for existence of Kashuri Fundo transform)

If f(t) is piecewise continuous on [0, ∞) and of exponential order 1/k2, then K [f(t)](v) 
exists for |v| < k [21].

Properties of the transform

Theorem (linearity property of Kashuri Fundo transform)

Let f(x) and g(x) be functions whose Kashuri Fundo integral transforms exists and  
a, b are constants. Then [21]:

[ ( ) ( )] [ ( )] [ ( )]K af x bg x aK f x bK g x± = ± (4)

Theorem (Kashuri Fundo transform of the partial derivatives) 

Let A(x, v) be Kashuri Fundo transform of f (x, t). Then [16]:
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Kashuri Fundo trasform of some special functions 

 Kashuri Fundo transform of some special functions [21, 22] can be seen in tab. 1.

Table 1.
f (t) K [f (t)] = A(v)
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Kashuri Fundo transform of Caputo fractional derivative

Let A(x, v) be Kashuri Fundo transform of f (x, t). The Kashuri Fundo transform of 
Caputo fractional derivative is defined [20]:
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where
	 0, 1n nα α> − < ≤ ∈

Mixture of Kashuri Fundo transform and homotopy perturbation method

Consider a time-fractional non-linear non-homogeneous partial differential equation 
of the form:

D ( , ) ( , ) ( , ) ( , )t f x t Rf x t Nf x t g x tα = + + (12)
with initial conditions:

( )( ,0) ( ), ( ,0)t xf x h x f x u= = (13)
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where g(x, t) is the non-homogeneous term, N – the non-linear differential operator, R – the 
linear differential operator, and Dα

t f (x, t) is the Caputo fractional derivative. 
The procedure is as follows [16, 17]:
Taking Kashuri Fundo transform on both sides of eq. (12) and by eq. (11), we get:

[ ] [ ] [ ]3 2 2( , ) ( ) ( ) ( , ) ( , ) ( , )K f x t vh x v u x v K Rf x t Nf x t v K g x tα α= + + + + (14)

Applying the inverse Kashuri Fundo transform on both sides of eq. (14) and using tab. 1,  
we find:

[ ]1 2( , ) ( , ) ( , ) ( , )f x t G x t K v K Rf x t Nf x tα−   = + + (15)

where G (x, t) is the term resulting from the non-homogeneous term and given initial conditions. 
Now, we apply the homotopy perturbation method. Assuming that the solution of  

eq. (12) can be written as a power series in p:
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and the non-linear term Nf(x, t) can be decomposed:
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where Hn(f0, f1,..., fn) are the so-called He’s polynomials that represents the non-linear terms and 
are given:
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Substituting eqs. (16) and (17) in eq. (15), we find:
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Comparing the coefficients of like powers of p, the following approximations are 
obtained:

0
0: ( , ) ( , )p f x t G x t= (20)

[ ]1 1 2
1 0 0: ( , ) ( , )p f x t K v K Rf x t Hα−   = + (21)

[ ]2 1 2
2 1 1: ( , ) ( , )p f x t K v K Rf x t Hα−   = + (22)

	 ⋮
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Therefore, the solution of eq. (12):

0 1 2( , ) ( , ) ( , ) ( , ) ... ( , ) ...nf x t f x t f x t f x t f x t= + + + + + (24)
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Application to fractional porous media equation  
and non-linear heat transfer equation

Application to fractional porous media equation

Consider the following non-linear fractional porous media equation [23, 24]:

[ ], 0 1D ( , ) D ( , )D ( , )t x xu ux t u x t x tα α< ≤= (25)

subject to the initial condition:
( ,0)u x x= (26)

Taking Kashuri Fundo transform on both sides of eq. (25) and by eq. (11), we get:

[ ] [ ]2( , ) ( ,0) D ( , )D ( , )x xK u x t vu x v K u x t u x tα   = + (27)

Applying the inverse Kashuri Fundo transform on both sides of eq. (27), we find:
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Substituting eqs. (16) and (17) into eq. (28) and applying the Kashuri Fundo transform 
combined with homotopy perturbation method, we get:
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where Hn is He’s polynomial that represents the non-linear term u(x, t)Dxu(x, t). The few terms 
of Hn are computed:
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Comparing the coefficients of like powers of p, the following approximations are 
obtained:
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So the solution of eqs. (25) and (26) are given:

( , )
(1 )

tu x t x
α

α
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The result obtained in eq. (35) is the same as the result obtained in [23, 24]. If α = 1, 
eq. (35) can be rearranged:

( , )u x t x t= + (36)
which is exactly the same as the result given by [23, 24].
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Application to time-fractional heat transfer equation

Consider the following non-linear time-fractional heat transfer equation with cubic 
non-linearity [23, 25, 26]:

3( , ) ( , )D ( , ) 2t xx x t x tu x t u uα = − (37)

subject to the initial condition:

2
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Taking Kashuri Fundo transform on both sides of eq. (37) and by eq. (11), we get:

[ ] 2 3( , ) ( ,0) ( , ) 2 ( , )xxK u x t vu x v K u x t u x tα   = + − (39)

Applying the inverse Kashuri Fundo transform on both sides of eq. (39), we find:
1 2 3( , ) ( ,0) ( , ) 2 ( , )xxKu x t u x v K u x t u x tα−     = + − (40)

Substituting eqs. (16) and (17) into eq. (40) and applying the Kashuri Fundo transform 
combined with homotopy perturbation method, we get:
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where Hn is He’s polynomial that represents the non-linear term 2u3(x, t). The few terms of Hn 
are computed:

3 2 2 2
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Comparing the coefficients of like powers of p, the following approximations are 
obtained:
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So the solution of eqs. (37) and (38) are given:

( ) ( )

( ) ( ) ( )

2

2 2 32 2

3 3 3

4 5 5 22 2 2

( , ) 6(1 2 ) 72(1 2 )1 2
(1 ) (1 2 )1 1 1

1296(1 2 ) 432(1 2 ) 216(1 2 ) (1 2 )
(1 3 )(1 )1 1 1

u x t x xx t t
x x x x x x
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x x x x x x

α α

α

α α

α
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 
 + +
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+ ++ ⋅
Γ + Γ ++ + + + + +

+ + + Γ +− + − ⋅
Γ +Γ ++ + + + + +

 (47)

The result obtained in eq. (47) is the same as the result obtained in [23]. If α = 1,  
eq. (47) can be rearranged:

( ) ( ) ( )
2 3

2 2 3 42 2 2

6(1 2 ) 36(1 2 ) 216(1 2 )1 2( , )
1 1 1 1

x x xxu x t t t t
x x x x x x x x

+ + ++= − + − +
+ + + + + + + +

 (48)

which is coincides with the result obtained in [25].
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