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In this paper, we study rotational hypersurfaces in 4-D Lorentz-Minkowski space 
with density. We give the weighted mean curvature of a rotational hypersurface 
about spacelike (timelike) axis in E4 

1 with densities ex2–y2–z2 and ex–y–z (e–y2–z2–t2 and 
e–y–z–t). We obtain the parametric expressions of the rotational hypersurfaces about 
spacelike (timelike) axis in E4 

1 with density ex2–y2–z2 (e–y2–z2–t2) with respect to the 
weighted mean curvature and give some examples for them. Also, we give some 
results about rotational hypersurfaces about spacelike (timelike) axis in E4 

1 with 
density ex–y–z (e–y–z–t) to be with constant or non-constant weighted mean curvature. 
Key words: rotational hypersurface, weighted mean curvature, density 

Introduction

The rotational surfaces have many application areas in many fields of physics and 
engineering. When certain objects are designed digitally, revolutions like these can be used to 
determine surface area without the use of measuring the length and radius of the object being 
designed [1]. So, let α: I ⊂ R → π be a curve in a plane π of space and l be a straight line in 
this space. Then a rotational (hyper)surface is defined by a (hyper)surface rotating the profile 
curve α around the axis l. According to this definition, lots of studies have been done by math-
ematicians about rotational (hyper)surfaces in different spaces. Moore [2] has studied surfaces 
of rotation in 4-D space and in Chen and Ishikawa [3], the authors have classified all finite 
type surfaces in E3. The rotation surfaces with finite type Gauss map in E4 have been given 
in [4]. Also, the extrinsic differential geometry of submanifolds in 4-D Lorentz-Minkowski 
space is special interest in Relativity Theory. In this context, the explicit parameterizations 
of rotation hypersurfaces with constant mean curvature in Lorentz-Minkowski space and flat 
lightlike hypersurfaces in Lorentz-Minkowski 4-space have been studied in [5, 6], respectively. 
Furthermore, different studies about rotational (hyper)surfaces in four dimensional Euclidean 
and Minkowskian 4-spaces have been done in [7-11], and, etc. 

On the other hand, manifolds with density arise in physics when considering surfaces 
or regions with differing physical density. An example of an important 2-D surface with density 
is the Gauss plane, a Euclidean plane with volume and length weighted by (2π)–1e–r2/2, where r 
is the distance from the origin. Also, in physics, an object may have differing internal densities 
so in order to determine the object’s mass it is necessary to integrate volume weighted with 
density. In general, for a manifold with density, in terms of the underlying Riemannian volume 
dV and perimeter dP, the new weighted volume and area are given [12]:
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d = e d and d = e dV V P Pϕ ϕ
ϕ ϕ (1)

General relativity models the physical universe as a 4-D C∞ Hausdorff differentiable 
space-time manifold, M, with a Lorentzian metric, g, of signature (–, +, +, +) which is topolog-
ically connected, paracompact and space-time orientable. These properties are suitable when 
we consider for local physics. As soon as we investigate global features then we face various 
pathological difficulties such as, the violation of time orientation, possible non-Hausdorff or 
non-papacompactness, disconnected components of space-time, etc. However, we think that 
the space-time is causally well-behaved in this context [13]. If H is the mean curvature and N 
is the unit normal vector field of an n-dimensional hypersurfaces, the κ is the curvature and N 
is the principal normal vector of a curve, then the notions of weighted mean curvature of an 
n-dimensional hypersurface and weighted curvature of a curve on manifolds with density eφ 
have been introduced:

1 d d= and =
1 d d

H H
n Nϕ ϕ

ϕ ϕκ κ− −
− N

(2)

respectively, [14]. The weighted mean curvature is a natural generalization of the mean curva-
ture of a surface and a surface with Hφ = 0 is called a weighted minimal surface.

Also in [12], the authors have introduced the notion of weighted Gaussian curvature 
of a surface which is a generalization of the Gaussian curvature of a surface in a manifold with 
density eφ and defined:

=K Kϕ ϕ− ∆ (3)
where K is the Gaussian curvature of a surface and Δ is the Laplacian operator. If a surface’s 
weighted Gaussian curvature is zero everywhere, then we call it a weighted flat surface. Ac-
cording to these definitions, some characterizations of weighted curves and surfaces in Euclide-
an, Minkowskian and Galilean spaces with different densities have been studied by geometers, 
physicists and, etc., see [12, 15-29], and, etc.

Now, let we recall some fundamental notions for hypersurfaces in Lorentz-Minkow-
ski 4-space.

If 1 2 3 4 1 2 3 4 1 2 3 4= ( , , , ), = ( , , , ), = ( , , , )a a a a a b b b b b c c c c c


 

are three vectors in E4
1, then the inner product and vector product are defined:

	 1 1 2 2 3 3 4 4, =a b a b a b a b a b− + + +




and
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

= det

e e e e
a a a a

a b c
b b b b
c c c c

− 
 
 × ×
 
 
 



 

(4)

respectively. Also, the norm of the vector a ⃗is

	
= ,a a a  

If  ( )3 4
1 1 2 3 1 1 2 3 2 1 2 3 3 1 2 3 4 1 2 3: , ( , , ) = ( , , ), ( , , ), ( , , ), ( , , )E E x x x x x x x x x x x x x x xΛ → Λ Λ Λ Λ Λ

is a hypersurface in Lorentz-Minkowski 4-space E 41, then the Gauss map (i.e., the unit normal 
vector field), the matrix forms of the first and second fundamental forms:
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1 2 3

1 2 3

= , = , , = ,
x x x

ij x x ij x xi j i j
x x x

N g h N
Λ ×Λ ×Λ

Λ Λ Λ
Λ ×Λ ×Λ

(5)

respectively. Here

 	

2

= , = , , {1,2,3}x x xi i j
i i j

i j
x x x
∂Λ ∂ Λ

Λ Λ ∈
∂ ∂

If [gij] is the inverse matrix of [gij], then the matrix of shape operator of the hypersur-
face Λ:

= [ ] = [ ][ ]ij
ij ija g h (6)

With the aid of eqs. (5) and (6), the Gaussian curvature and mean curvature of a hy-
persurface in E 41 are given:

det[ ]
= and 3 = ( )

det[ ]
ij

ij

h
K H tr

g
ε ε  (7)

respectively [30]. Here, ε = ⟨N, N⟩.

Rotational hypersurfaces about spacelike axis in E4
1 with density

In this section, we give the weighted mean curvature of a rotational hypersurface about 
spacelike axis in E 41 with densities ex2–y2–z2 and ex–y–z and also, we obtain the parametric expres-
sions of the rotational hypersurfaces with respect to (wrt) the weighted mean curvature. Firstly, 
we recall the curvatures of the rotational hypersurfaces about spacelike axis which can be ob-
tained by taking a = b = 0 in [11].

For a differentiable function ω(x): I ⊂ R → R, the rotational hypersurface generated 
by rotating the profile curve γ1(x) = (x, 0, 0, ω(x)) about spacelike axis (0, 0, 0, 1):

( )

cosh cosh sinh cosh sinh 0
sinh cosh 0 0 0

( , , ) =
cosh sinh sinh sinh cosh 0 0

0 0 0 1 ( )
= cosh cosh , sinh , cosh sinh , ( )

y z y z z x
y y

S x y z
y z y z z

x
x y z x y x y z x

ω

ω

   
   
    =
   
   
   

(8)

where x ∈ R – {0}. The unit normal vector of the rotational hypersurface eq. (8) is given:

( )
2

1= cosh cosh , sinh , cosh sinh ,1
(1 )

SN y z y y zω ω ω
ε ω

′ ′ ′−
′−

(9)

where ε = ∓1. So, we have ⟨NS, NS⟩ = 1/ε. If ε = –1, then rotational hypersurface eq. (8) is 
spacelike hypersurface ( if ε = 1, then rotational hypersurface eq. (8) is timelike hypersurface).

The Gaussian curvature and the mean curvature of the rotational hypersurface eq. (8) 
are given:

( )
2 2

5/2 3/222 2

2 (1 )= and =
3 (1 )(1 )

S S xK H
xx

ω ω ω ω ωε ε
ε ωε ω

′ ′′ ′ ′ ′′− +

′′  −−  
(10)

respectively. Here, we state

	

2

2

d ( ) d ( )= ( ), = , and =
d d

x xx
x x

ω ωω ω ω ω′ ′′



Altin, M.: Rotational Hypersurfaces Generated by Weighted Mean Curvature ... 
3046	 THERMAL SCIENCE: Year 2022, Vol. 26, No. 4A, pp. 3043-3053

Rotational hypersurfaces about spacelike axis generated by  
weighted mean curvature in E4

1 with density ex2–y2–z2 

From eqs. (2), (9), and (10), the weighted mean curvature of the rotational hypersur-
face eq. (8) in E4

1 with density ex2–y2–z2 is obtained:

( )
2 2 3

3/22

2(1 ) 2(1 )=
3 (1 )

S x x xH
x

ϕ
ω ω ωε
ε ω

′ ′ ′′+ − + +

′−
(11)

Now, our aim is to obtain the function ω wrt the weighted mean curvature HS
φ by solv-

ing the eq. (11). Hence, let us take the function F1:

( )1 2 2

( )=
1 ( )

xF
x x

ω

ε ω

′

′−
(12)

By differentiting eq. (12), from eq. (10) we have:
2 2

1 12 (2 )=
3

S x F x x FHϕ

′+ + (13)

The solution of the first ODE (13) wrt F1 is obtained:
2 22

1
1

1 14

e 3 e ( )d
= ,

x
x t Sc t H t t

F c
x

ϕ
−  

+ 
  ∈

∫
R

(14)

Using eqs. (12) and (14), we reach:
2

2 22 2
1

1
2

2 24 2 2
1

1

e 3 e ( )d
( ) = d

e 3 e ( )d

x
x t S

x
x t S

c t H t t
x x

x c t H t t

ϕ

ϕ

ε
ω

ε

−

−

 
+ 

 ±
 

+ + 
 

∫
∫

∫
(15)

Therefore, we have:
Theorem 1. The rotational hypersurface eq. (8) about spacelike axis in E4

1 with density 
ex2–y2–z2 can be parametrized wrt the weighted mean curvature:

2
2 22 2

1
1

2
2 24 2 2

1
1

e 3 e ( )d
( , , ) = cosh cosh , sinh , cosh sinh , d

e 3 e ( )d

x
x t S

x
x t S

c t H t t
S x y z x y z x y x y z x

x c t H t t

ϕ

ϕ

ε

ε

−

−

   +   ± 
  

+ +     

∫
∫

∫
(16)

where

	

2
2 24 2 2

1 1
1

and if 1, then < e 3 e ( )d
x

x t Sc x c t H t tϕε −  
∈ = + 

 
∫R

Example 1. Taking

 	

2

2

1 2( ) =
3

S xH x
xϕ

+
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and c1 = e in eq. (16), then the rotational hypersurface is obtained:

( )( , , ) = cosh cosh , sinh , cosh sinh ,arcsin ( ) , if = 1S x y z x y z x y x y z h x ε (17)

( )( , , ) = cosh cosh , sinh , cosh sinh ,arcsin( ) , if = 1S x y z x y z x y x y z x ε − (18)
In figs. 1 and 2, the projections of the rotational hypersurfaces eqs. (17) and (18) 

Gaussian and mean curvatures’ graphics and the variations of them on hypersurfaces can be 
seen for z = 0.5 into x1x2x4-space, respectively. 

Figure 1. Graphics of curvatures and their variations on eq. (17)

 
Figure 2. Graphics of curvatures and their variations on eq. (18)
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Weighted mean curvature of rotational hypersurfaces  
about spacelike axis in E4

1 with density ex–y–z 

From eqs. (2), (9), and (10), the weighted mean curvature of the rotational hypersur-
face eq. (8) in E4

1 with density ex–y–z is obtained:

( )
2

3/22

2 sinh cosh (sinh cosh ) (1 )=
3 (1 )

S x y x y z z xH
x

ϕ
ω ω ωε

ε ω

′ ′ ′′− − − − +

′−
(19)

Let the weighted mean curvature be constant, i.e., HS
φ = c. From eq. (19), we have:

( )3/22 2 2(1 )(sinh e cosh ) 3 (1 ) 2 (1 ) = 0zx y y cx xε ω ω ε ω ε ω εω ω−′ ′ ′ ′′ ′ ′− − + − − − − (20)

If the eq. (20) is solved, the following two equations must hold:

	 ( )3/22 2 2(1 ) = 0 and 3 (1 ) 2 (1 ) = 0x cx xω ω ε ω ε ω εω ω′ ′ ′ ′′ ′ ′− − − − −

Since (1 – ω′2) ≠ 0, the joint solution of these two equations is possible only with  
ω′ = 0 and c = 0. 

Therefore, we have:
Theorem 2. The rotational hypersurface eq. (8) about spacelike axis in E4

1 with density 
ex–y–z can never have a non-zero constant weighted mean curvature. 

Theorem 3. Weighted minimal rotational hypersurface eq. (8) about spacelike axis in 
E4

1 with density ex–y–z can be parametrized:

( )( )( , , ) = cosh cosh , sinh , cosh sinh , ,S x y z x y z x y x y z k k ∈R (21)

In fig. 3, the projection of the spacelike rotational hypersurface eq. (21) can be seen 
for z = 0, 5, k = 3 into x1x2x3 and x1x2x4-spaces, respectively.

Figure 3. Rotational hypersurfaces (21) into x1x2x3-spaces (a) and x1x2x3-spaces (b)

Rotational hypersurfaces about timelike axis in E4
1 with density

In this section, we give the weighted mean curvature of a rotational hypersurface 
about timelike axis in E4

1 with densities e–y2–z2–t2 and e–y–z–t also, we obtain the parametric ex-
pressions of them wrt the weighted mean curvature. Firstly, let we recall the curvatures of the 
rotational hypersurface about timelike axis which can be obtained by taking a = b = 0 in [11]. 

For a differentiable function ϕ(x): I ⊂ R → R, the rotational hypersurface generated 
by rotating the profile curve γ(x) = (ϕ(x), 0, 0, x) about timelike axis (1, 0, 0, 0):
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( )

1 0 0 0 ( )
0 cos sin sin cos sin 0

( , , ) =
0 0 cos sin 0
0 sin sin cos cos cos

= ( ), cos sin , sin , cos cos

x
z y z y z

T x y z
y y

z y z y z x
x x y z x y x y z

φ

φ

   
   − −    =
   −
   
   

− −

(22)

where x ∈ R – {0} and 0 ≤ y, z ≤ 2π. The unit normal vector, Gaussian curvature and mean 
curvature of the rotational hypersurface eq. (22) are given:

( )
2

1= 1, cos sin , sin , cos cos
( 1)

TN y z y y zφ φ φ
ε φ

′ ′ ′− −
′ −

(23)

( ) ( )
2 2

5/2 3/22 2 2

2 (1 )= and =
( 1) 3 ( 1)

T T xK H
x x

φ φ φ φ φε ε
ε φ ε φ

′ ′′ ′ ′ ′′− +

′ ′− −
(24)

respectively. Here, we state 

	

2

2

d ( ) d ( )( ), = , and =
d d

x xx
x x

φ φφ φ φ φ′ ′′=

Rotational fypersurfaces about timelike axis generated  
by weighted mean curvature in E4

1 with density e–y2–z2–t2 

From eqs. (2), (23), and (24), the weighted mean curvature of the rotational hypersur-
face in E4

1 with density ey2–z2–t2:

 ( )
2 2 3

3/22

2(1 ) 2(1 )=
3 ( 1)

T x x xH
x

ϕ
φ φ φε
ε φ

′ ′ ′′− − − +

′ −
(25)

For solving eq. (25) wrt the weighted mean curvature HS
φ, let us put:

2 2 2

( )=
( 1)

xF
x

φ

ε φ

′

′ −
(26)

From eqs. (25) and (26), we have:
2 2

2 22 ( 2)=
3

T x F x x FHϕ

′− + − (27)

and the solution of the first order differential eq. (27) wrt F4 is obtained:
2 22

1
1

2 14

e 3 e ( )d
= d ,

x
x t Td t H t t

F t d
x

ϕ
− 

− 
  ∈

∫
R

(28)

Using eqs. (26) and (28), we reach that:
2

2 22 2
1

1
2

2 24 2 2
1

1

e 3 e ( )d
( ) = d

e 3 e ( )d

x
x t T

x
x t T

d t H t t
x x

x d t H t t

ϕ

ϕ

ε
φ

ε

−

−

 
− − 

 ±
 

− − 
 

∫
∫

∫
(29)
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So, we can state the following theorem:
Theorem 4. The rotational hypersurface eq. (22) about timelike axis in E4

1 with density 
e–y2–z2–t2 can be parametrized wrt the weighted mean curvature:

2
2 22 2

1
1

2
2 24 2 2

1
1

e 3 e ( )d
( , , ) = d , cos sin , sin , cos cos

e 3 e ( )d

x
x t T

x
x t T

d t H t t
T x y z x x y z x y x y z

x d t H t t

ϕ

ϕ

ε

ε

−

−

   − −   ± − − 
  

− −     

∫
∫

∫
(30)

where d1 ∈ R and if ε = 1 then

	

2
2 24 2 2

1
1

< e 3 e ( )d
x

x t Tx d t H t tϕ
− 

− 
 

∫

Example 2. If we put

	

22 3=
3

T xHϕ
−

and d1= 1/e in eq. (30), then the rotational hypersurface is given:

( )2( , , ) = , cos sin , sin , cos cosT x y z x x y z x y x y zε− − − (31)

In fig. 4 (for ε = 1) and fig. 5 (for ε = –1), the projections of the rotational hypersurfac-
es eq. (31) Gaussian and mean curvatures’ graphics and the variations of them on hypersurfaces 
can be seen for z = 0.5 into x1 x3 x4-space, respectively.

 
Figure 4. Graphics of curvatures and their variations on eq. (31) for ε = 1
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Figure 5. Graphics of curvatures and their variations on eq. (31) for ε = –1

Weighted mean curvature of rotational hypersurfaces  
about timelike axis in E4

1 with Density e–y–z–t 

From eqs. (2), (23) and (24), the weighted mean curvature of the rotational hypersur-
face in E4

1 with density e–y–z–t:
( )

( )
2

3/22

2 sin cos (cos sin ) ( 1)
=

3 ( 1)
T x y x y z z x

H
x

ϕ

φ φ φ
ε

ε φ

′ ′ ′′+ − − − +
−

′ −
(32)

Let the weighted mean curvature be constant (i.e., HS
φ = c). From eq. (32), we have:

( ) ( )3/22 2 2(1 ) sin cos (cos sin ) 3 ( 1) 2 (1 ) = 0'x y y z z cx xε φ φ ε φ ε φ εφ φ′ ′ ′′ ′ ′− − − − − − + − (33)

If the eq. (33) is solved, it is seen:

	 ( )3/22 2 2(1 ) = 0 and 3 ( 1) 2 (1 ) = 0'x cx xφ φ ε φ ε φ φ φ′ ′ ′′ ′ ′− − − + −

Since ϕ′2 – 1 ≠ 0, the joint solution of these two equations is possible only with ϕ′ = 0, 
c = 0, and ε = –1. 

Therefore, we have:
Theorem 5. The timelike rotational hypersurface eq. (22) about timelike axis in E4

1 
with density ex–y–z can never have a constant weighted mean curvature. 

Theorem 6. The spacelike rotational hypersurface eq. (22) about timelike axis in E4
1 

with density ex–y–z can never have a non-zero constant weighted mean curvature. 
Theorem 7. Weighted minimal spacelike rotational hypersurface (8) about spacelike 

axis in E4
1 with density ex–y–z can be parametrized:

( )( , , ) = , cos sin , sin , cos cos ,S x y z k x y z x y x y z k− − ∈R (34)
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In fig. 6, the projection of the spacelike rotational hypersurface eq. (34) can be seen 
for z = 0.5, k = 3 into x1x2x3-spaces and x2x3x4-spaces, respectively.

 
Figure 6. Rotational hypersurface eq. (34) into x1x2x3-spaces and x2x3x4-spaces
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