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Integral transforms provide us great convenience in finding exact and approximate 
solutions of many mathematical physics and engineering problems such as sig-
nals, wave equation, heat conduction, heat transfer. In this study, we consider the 
Kashuri Fundo transform, which is one of these integral transforms, and our aim 
is to show that this transform is an effective method in solving steady heat transfer 
problems and obtained results are compared with the results of the existing tech-
niques.
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Introduction

Integral transforms have been used in solving problems in many different fields such 
as physics, engineering, chemistry, etc. These transforms provide great convenience in reach-
ing the solutions of equations by converting differential operators from the original domain 
to another domain. In particular, some equations can be quite difficult to solve in the original 
domain. In such equations, solving symbolically in the new domain obtained by integral trans-
forms makes things much easier. The solution found as a result of integral transforms is con-
verted back to the original domain with inverse integral transforms [1-5].

The most famous integral transforms are the Laplace transform introduced by the 
French mathematician Laplace (1747-1827) [6] and the Fourier integral transform introduced 
by another French mathematician Fourier (1768-1830) [7]. These transforms are very effective 
in finding precise and approximate solutions to mathematical physics and engineering problems 
such as signals, wave equation, transient and steady-state analysis of heat conduction in solids, 
vibrations of continuous mechanical systems [8-13]. There exist many different integral trans-
forms such as Mellin transform [14], Sumudu transform [15], Laplace-Carson transform [16], 
z-transform [17], Hankel’s transform [18], Weierstrass transform [19], natural transform [20], 
Yang transform [21, 22], NL-TI transform [23] which are used in mathematical physics and 
engineering problems. In this study, we consider one of these transforms, the Kashuri Fundo 
transform [24].
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The aim of this study is to show that Kashuri Fundo integral transform is an effective 
method for solving steady heat transfer problems. 

Kashuri Fundo transform method

We consider functions in the set F defined:
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For a function belonging to the set F, the constant M must be finite number. The k1, k2 

may be finite or infinite. Kashuri Fundo transform denoted by the operator K(.) is defined [24]:
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Inverse Kashuri Fundo transform is denoted by K–1[A(v)] = f(t), t ≥ 0.

Theorem (sufficient conditions for existence of Kashuri Fundo transform)

If f(t) is piecewise continuous on [0, ∞) and of exponential order 1/k2, then K[f(t)](v) 
exists for |v| < k [24].

Properties of the transform

Theorem (linearity property) 

Let f(t) and g(t) be functions whose Kashuri Fundo integral transforms exists and c be 
a constant. Then [24]:
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Theorem (Kashuri Fundo transform of the derivatives of the function f(t)) 

Let A(v) be a Kashuri Fundo transform of f(t). Then [24]:
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Theorem (Kashuri Fundo transform of the partial derivatives) 

Let A(x, v) be a Kashuri Fundo transform of f(x, t). Then [25]:
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Kashuri Fundo Transform of some special functions

Kashuri Fundo transform of some special functions are listed in tab. 1 [24, 26].
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Applications

In this section, we show the applicability of the Kashuri Fundo integral transform to 
steady heat transfer problems.

Application 1

Consider the following steady heat transfer problem [5]:

( ) ( )phA t Vc tθθ ρ ′− = (14)
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subject to the initial condition:

0(0)θ θ= (15)
where h is the convection heat transfer coefficient, A – the surface area of the body, ρ – the den-
sity of the body, V – the volume, cp – the specific heat of the material, and θ(t) – the temperature.

Taking Kashuri Fundo transform of both sides of eq. (14), we get:
[ ]( ) ( )pK hA t K Vc tθθ ρ ′  − = (16)

[ ] [ ]( ) ( )pt thAK Vc Kθ θρ ′− = (17)
Let’s rewrite eq. (17) using eq. (5) and initial condition, we found:
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Applying inverse Kashuri Fundo transform on both sides of eq. (20) and using tab. 1 
leads to the solution of eq. (14):

0( ) e p

hA t
Vct ρθ θ
−

= (21)

which is coincides with the results found in [4, 22, 23].

Application 2

Consider the following steady heat transfer problem [6]:
( , ) 2 ( , ), 0 5, 0t xxU x t U x t x t= < < > (22)

subject to the boundary and initial conditions:
(0, ) 0, (5, ) 0, ( ,0) 10sin(4 ) 5sin(6 )U t U t U x x x= = = π − π (23)

Taking Kashuri Fundo transform of both sides of eq. (22), we have:
[ ] [ ]( , ) 2 ( , )t xxK U x t K U x t= (24)

[ ] [ ]( , ) 2 ( , )t xxK U Ux t K x t= (25)
Let’s rewrite eq. (25) using eqs. (8) and (12), we get:

( ) 2
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vv x
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Substituting the boundary and initial conditions in eq. (26):
( ) ( ) ( ) ( )

2

2 2
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d
A x v A x v
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vx v
  − = − π − π (27)
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is obtained which represents an inhomogeneous linear differential equation. The general solu-
tion of eq. (27) can be expressed:

( , ) ( , ) ( , )h pA x v A x v A x v= + (28)

where Ah(x, v) is the solution of the homogeneous part of the eq. (27). If we calculate this solu-
tion, we find:

1 1
2 2

h 1 2( , ) e e
x x

v vA x v c c
−

= + (29)

and Ap(x, v) is the solution of the inhomogeneous part of the eq. (27). If we calculate this solu-
tion, we find:

( ) ( )2 2 2 2

10 5( , ) sin 4 sin 6
1 32 1 72p

v vA x v x x
v v

= π − π
+ π + π

(30)

Substituting eqs. (29) and (30) in eq. (28), we get:

( ) ( )
1 1
2 2

1 2 2 2 2 2

10 5( , ) e e sin 4 sin 6
1 32 1 72

x x
v v v vA x v c c x x

v v
−

= + + π − π
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(31)

In order to obtain c1 and c2, we employ the boundary conditions:

[ ](0, ) 0 (0, ) (0, ) 0U t K U t A v= ⇒ = = (32)

[ ](5, ) 0 (5, ) (5, ) 0U t K U t A v= ⇒ = = (33)
Using eqs. (31) and (32) we get c1 = –c2. Using eqs. (31) and (33) we find  c1 = 0 ⇒ c2 = 0. If these obtained values are substituted in eq. (31), we get:

( )2 2 2 2

10 5( , ) sin 4 sin(6 )
1 32 1 72

v vA x v x x
v v

= π − π
+ π + π

(34)

Applying inverse Kashuri Fundo transform on both sides of eq. (34) and using tab. 1:

( ) ( )2 232 72( , ) 10e sin 4 5e sin 6t tU x t x x− π − π= π − π (35)

is obtained which is in excellent agreement with the result obtained in [6, 23].

Application 3

Consider the following steady heat transfer problem [6]:

( , ) 9 ( , ), 0 2, 0tt xxY x t Y x t x t= < < > (36)

subject to the boundary and initial conditions:

(0, ) 0, (2, ) 0, ( ,0) 20sin(2 ) 10sin(5 )Y t Y t Y x x x= = = π − π (37)

Taking Kashuri Fundo transform of both sides of eq. (36), we get:

[ ] [ ]( , ) 9 ( , )tt xxYK x t K Y x t= (38)

[ ] [ ]( , ) 9 ( , )tt xxY YK x t K x t= (39)
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Let us rewrite eq. (39) using eqs. (9) and (12), we have:
( ) 2

4 3 2

, ( ,0) 1 ( ,0) d ( , )9
d

A x v Y x Y x A x v
v tv v x
∂

− − =
∂

(40)

Substituting the boundary and initial conditions in eq. (40):
( ) ( ) ( ) ( )

2

2 4 3

9d , , 1 20sin 2 10sin 5
d
A x v A x v

x x
x v v

  − = − π − π (41)

is obtained which represents an inhomogeneous linear differential equation. The general solu-
tion of eq. (41) can be expressed:

h p( , ) ( , ) ( , )A x v A x v A x v= + (42)

where Ah(x, v) is the solution of the homogeneous part of the eq. (41). If we calculate this solu-
tion, we find:

2 2
1 1

3 3
h 1 2( , ) e e

x x
v vA x v c c

−
= + (43)

and Ap(x, v) is the solution of the inhomogeneous part of the eq. (41). If we calculate this solu-
tion, we find:

( ) ( )p 2 4 2 4

20 10( , ) sin 2 sin 5
1 36 1 225

v vA x v x x
v v

= π − π
+ π + π

(44)

Substituting eqs. (43) and (44) in eq. (42), we get:

( ) ( )2 2
1 1

3 3
1 2 2 4 2 4

20 10( , ) e e sin 2 sin 5
1 36 1 225

x x
v v v vA x v c c x x

v v
−

= + + π − π
+ π + π

(45)

In order to obtain c1 and c2, we employ the boundary conditions:
[ ](0, ) 0 (0, ) (0, ) 0Y t K Y t A v= ⇒ = = (46)

[ ](2, ) 0 (2, ) (2, ) 0Y t K Y t A v= ⇒ = = (47)
Using eqs. (45) and (46) we get c1 = –c2. Using eqs. (45) and (47) we find  c1 = 0 ⇒ c2 = 0. If these obtained values are substituted in eq. (45), we get:

( )2 4 2 4

20 10( , ) sin 2 sin(5 )
1 36 1 225

v vA x v x x
v v

= π − π
+ π + π

(48)

Applying inverse Kashuri Fundo transform on both sides of eq. (48) and using tab. 1:

 ( ) ( )( , ) 20sin 2 cos(6 ) 10sin 5 cos(15 )Y x t x t x t= π π − π π (49)

is found which is fully in good agreement with the result obtained in [6].

Nomenclature

cp 	 – specific heat of the material, [JKkg–1] 
h 	 – convection heat transfer coefficient, [WKm–2]
U(x, t) – temperature at any plane x  

at any time t, [K]
V 	 – volume, [m3]
x	 – space co-ordinate, [m]

Greek symbols

θ(t)	– temperature, [K]
ρ	 – density, [kgm–3] 
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