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Integral equations can be defined as equations in which unknown function to be 
determined appears under the integral sign. These equations have been used in 
many problems occurring in different fields due to the connection they establish 
with differential equations. Abel’s integral equation is an important singular inte-
gral equation and Abel found this equation from a problem of mechanics, namely 
the tautochrone problem. This equation and some variants of it found applications 
in heat transfer between solids and gases under non-linear boundary conditions, 
theory of superfluidity, subsolutions of a non-linear diffusion problem, propagation 
of shock-waves in gas field tubes, microscopy, seismology, radio astronomy, satel-
lite photometry of airglows, electron emission, atomic scattering, radar ranging, 
optical fiber evaluation, X-ray radiography, flame and plasma diagnostics. Inte-
gral transforms are widely used mathematical techniques for solving advanced 
problems of applied sciences. One of these transforms is the Kashuri Fundo trans-
form. This transform was derived by Kashuri and Fundo to facilitate the solution 
processes of ODE and PDE. In some works, it has been seen that it provides great 
convenience in finding the unknown function in integral equations. In this work, 
our aim is to solve Abel’s integral equation by Kashuri Fundo transform and some 
applications are made to explain the solution procedure of Abel’s integral equation 
by Kashuri Fundo transform.
Key words: Abel’s integral equation, convolution theorem, integral transforms, 

Kashuri Fundo transform, inverse Kashuri Fundo transform

Introduction

Integral equations can be defined as equations that connect the unknown function u(x) 
and the definite integral in which this function is found [1-3]. These equations one of the most 
useful mathematical tools used in fields such as engineering, applied mathematics and mathe-
matical physics. They have enormous applications especially in obtaining mathematical solu-
tions to complex boundary value problems of mathematical physics. Integral equations have 
been used in many problems in different fields due to their close relationship with differential 
equations, which have a wide application area [1-5].

Abel’s integral equation is an important singular integral equation and Abel found this 
equation from a problem of mechanics, namely the tautochrone problem, which is considered 
to be the first application of fractional calculus to an engineering problem [6]. This equation and 
some variants of it found applications in heat transfer between solids and gases under non-linear 
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boundary conditions [7], theory of superfluidity [8], percolation of water [9], subsolutions of a 
non-linear diffusion problem, propagation of shock-waves in gas fields tubes [10], microscopy, 
seismology, radio astronomy, satellite photometry of airglows, electron emission, atomic scat-
tering, radar ranging, optical fiber evaluation, X-ray radiography, flame and plasma diagnostics 
[11]. In 1823, Abel [6] used:
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while investigating the motion of a particle sliding down along an unknown curve in a vertical 
plane [5, 6]. Here the kernel of the integral equation is the bivariate function
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The aim of Abel’s integral equation is to determine unknown u(t) function. There 
are numerous integral transforms that can be used to determine u(t) function. Aggarwal and  
Gupta [12-15] and Aggarwal and Sarma [16, 17] used some integral transforms for solving 
Abel’s integral equations. The aim of this work is to show that u(t) function can be determined 
by using Kashuri Fundo transform, without complex calculations.

Kashuri Fundo integral transform is a transform that has its origins in the Fourier in-
tegral and has a deep connection with the Laplace transform. This transformation was derived 
by Kashuri and Fundo [18] to facilitate the solution processes of ODE and PDE. Kashuri et 
al. [19] investigated the solution of non-linear PDE by mixing Kashuri Fundo transform and 
homotopy perturbation method. Kashuri et al. [20] applied Kashuri Fundo transform to solve 
some families of fractional differential equations. Gungor [21] investigated the solution of the 
convolution type linear Volterra integral equation with Kashuri Fundo transform.

Kashuri Fundo transform method

We consider functions in the set F defined:
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For a function belonging to the set F, the constant M must be finite number. The k1, k2 

may be finite or infinite. Kashuri Fundo transform denoted by the operator K(.) is defined [18]:
2
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Theorem (sufficient conditions for existence of Kashuri Fundo transform)

If f(t) is piecewise continuous on [0, ∞) and of exponential order 1/k2, then K[f(t)](v)
exists for |v| < k [18].

Properties of the transform

Theorem (linearity property)

Let f(t) and g(t) be functions whose Kashuri Fundo integral transforms exists and c be 
a constant. Then [18]:

[( )( )] [ ( )] [ ( )]K f g t K f t K g t± = ± (4)
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[( )( )] [ ( )]K cf t cK f t= (5)

Theorem (Kashuri Fundo transform of the derivatives of the function f(t)) 

Let A(v) be Kashuri Fundo transform of f(t). Then [18]:
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Kashuri Fundo transform of some special functions 

Kashuri Fundo transform of some special functions [18] are listed in tab. 1.

Table 1. 
f(t) K[f(t)] = A(v)
1 v
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Theorem (convolution theorem)

Let f(t) and g(t) be defined in F having Kashuri Fundo integral transforms M(v) and 
N(v) , respectively. Then, Kashuri Fundo integral transform of convolution of f(t) and g(t) is 
given [18]:
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Main result

In this section, we show the solution of Abel’s integral equation by Kashuri Fundo 
transform. Taking Kashuri Fundo transform of both sides of eq. (1), we have:

0
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1/2[ ( )] ( )K f x K x u x− ∗ = (11)

Applying convolution theorem of Kashuri Fundo transform in eq. (11), we find:
1/2[ ( )] [ ( )]K f x vK x K u x−  = (12)
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If we calculate K[x–1/2] we find:
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Applying the change of variable x = t2, (dx = 2tdt) to eq. (14):
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Applying the change of variable t/v = u, (dt = vdu) to eq. (15):
2 21/2
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Substituting the result from eq. (16) into eq. (13), we have:
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where

0
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Now applying Kashuri Fundo transform to derivative of the function on eq. (19), we 
have:
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Substituting eq. (22) into eq. (18), we obtain:

2

1[ ( )] [ ( )]K u x K F x
v
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Applying inverse Kashuri Fundo transform on both sides of eq. (25) and using eq. (19),  
we find:
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which is the required solution of eq. (1).

Applications

In this section, some applications are made to explain the solution procedure of the 
Abel’s integral equation with Kashuri Fundo transform.

Aplication 1 

Consider the following Abel’s integral equation [5]:

0

1 ( )d
x

x u t t
x t

=
−∫ (27)

Taking Kashuri Fundo transform of both sides of eq. (27):

0
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3 1/2 ( )v K x u x− ∗ = (29)

Using convolution theorem of Kashuri Fundo transform on eq. (29):

[ ]3 1/2 ( )v vK x K u x−  = (30)

3 [ ( )]v v K u x= π (31)
2

[ ( )] vK u x =
π

(32)

Applying inverse Kashuri Fundo transform on both sides of eq. (32):
1 21( )u x K v−   =

π
(33)

2( )u x x=
π

(34)

which is the required solution of eq. (27).
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Application 2 

Consider the following Abel’s integral equation [5]:

3
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Taking Kashuri Fundo transform of both sides of eq. (35):
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Using convolution theorem of Kashuri Fundo transform on eq. (38), we write:
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Applying inverse Kashuri Fundo transform on both sides of eq. (41):
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which is the required solution of eq. (35).

Application 3 

Consider the following Abel’s integral equation [5]:

( )
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Taking Kashuri Fundo transform of both sides of eq. (45):
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Using convolution theorem of Kashuri Fundo transform on eq. (48), we write:

( ) [ ]3 1/2 ( )v v vK x K u x−  π + = (49)

( ) [ ]3 ( )v v v K u xπ + = π (50)

[ ] ( )2( ) 1K u x v= π + (51)

Applying inverse Kashuri Fundo transform on both sides of eq. (51):
1 2( )u x K v v−   = π + (52)

1( ) 2u x x
x

= + (53)

which is the required solution of eq. (45).

Application 4 

Consider the following Abel’s integral equation [5]:

2
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Taking Kashuri Fundo transform of both sides of eq. (54):
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Using convolution theorem of Kashuri Fundo transform on eq. (57), we write:

( ) [ ]5 1/23 2 ( )
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[ ] 43( )
4
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Applying inverse Kashuri Fundo transform on both sides of eq. (60):

1 43
4

( )u x K v−π   = (61)

3/2( )u x x= (62)

which is the required solution of eq. (54).
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