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Introduction  

The differential equations with local fractional derivatives have proved to be a suita-

ble tool for modeling many non-differentiable phenomena. Many physical problems in fractal 

media lead to non-linear models involving local fractional derivatives [1, 2]. Recently, several 

authors investigated the non-linear local fractional heat equation for the anomalous diffusion 

on a fractal medium [3, 4], the fractal population dynamics [5], and the fractional generalized 

KdV system [6].  

Our interest here is to solve the following non-linear local fractional partial differen-

tial equation: 
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with the condition: 
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where /u t   and /u x   are the local fractional derivatives (0 1, 0 1)     , a, b, and 

c are constants, and ( )x is given function.  

When 1,   eq. (1) is called the Caudrey-Dodd-Gibbon-Kaeada equation [7], it 

has wide applications in the description of many non-linear phenomena in physics and chem-
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istry [8-10]. This problem is often challenging to be solved analytically. In recent years, some 

analytical methods for solving local fractional differential equations have been proposed, for 

examples, the variational iteration method [11-13], the homotopy perturbation method 

[14, 15], the local fractional series expansion [16], and the local fractional function decompo-

sition [17]. The new iterative method (NIM) was proposed first by Daftardar-Gejji and Jafari 

in [18], it is an effective procedure to find approximate analytical solutions of a wide class of 

non-linear local fractional differential equations [19, 20].  

The main purpose of this paper is to solve the problem of eqs. (1) and (2) by using 

the fractional complex transform [21-24] and NIM [18-20].  

Preliminaries  

Local fractional derivative 

In this section, we give some basic definitions and properties of the local fractional 

calculus theory [1-3]. 

Definition 1. For arbitrary 0,   assume that the relation below exists: 

 0( ) ( )f x f x    (3) 

with 0| | .x x   Then ( )f x is called local fractional continuous at x0 which is denoted by 

0

0lim ( ) ( ).
x x

f x f x


  If ( )f x  is local fractional continuous on the interval ( , ),a b  it is denoted 

by: 

 ( ) ( , )f x C a b   

Definition 2. Let ( ) ( , ).f x C a b  In fractal space, the local fractional derivative of 

( )f x of order   at the point 0x x  is given by: 
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where 0 0[ ( ) ( )] ( 1)[ ( ) ( )].f x f x f x f x       

Definition 3. The local fractional partial derivative of a high order is defined in the 

form: 

 
( , )

( , )

k times

k

k

u x t
u x t

x x x x

   

   

   


   
 (5) 

The following property holds true: 
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where there exist [ ( , )]u g x t and [ ( , )]/ .g x t x     

The new iterative method 

Below we illustrate the main points of NIM [18-20], by considering the following 

general function equation: 
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 ( ) ( )u L u u     (7) 

where L is a linear operator,  – a non-linear operator, and   – a known function. 

Assume that the solution of eq. (7) is of the form: 
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The non-linear operator   can be decomposed as: 
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From eqs. (8) and (9), eq. (7) is equivalent to: 
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Define the recurrence relation: 
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where  

 0 0( )u    (12)  
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Then the p-term approximate solution of (7) is given by: 

 0 1 1pu u u u       (14) 

Solution of the problem (1)-(2) 

In this section, we consider the following initial value problem of non-linear local 

fractional Caudrey-Dodd-Gibbon-Kaeada equation: 
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By using the fractional complex transform [21-24]: 

 ,
(1 ) (1 )
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X T

 

 
 
   

 (16) 

the problem (15) becomes: 
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The understanding of eq. (16) was discussed in detail by the two-scale fractal theory 

for various applications [25-34]. We rewrite the problem (17): 
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Suppose that the solution of eq. (18) takes the form: 
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and the non-linear term in eq. (18) is decomposed: 
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then according to NIM, we obtain: 
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Thus the p-term approximate solution of eq. (18) is given by: 

 0 1 2( , ) ( , ) ( , ) ( , ) ( , )pU X T U X T U X T U X T U X T      

From eq. (14), we can get the solution of the problem (15): 
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Application 

Consider the problem (1)-(2) in the form: 
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By the relations (16), we obtain: 
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Let exp( 2 ) ,X E   
2

exp .
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Then by eq. (23), we have: 
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and so on. 

Hence, from eq. (17), we obtain: 
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Finally, the solution of eq. (23) is given by: 
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When 1,    if let exp( 2 ) ,x G   then we get: 
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which is close to the exact solution [10]: 

 2( , ) sech ( 16 )u x t x t    
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Conclusion 

We have presented an analytic algorithm for non-linear local fractional Caudrey-

Dodd-Gibbon-Kawada equation. The fractional complex transform method and NIM have 

been successfully applied to find the approximate analytical solutions of the equation. The re-

sults show that NIM is a powerful and efficient technique in finding approximate analytical 

solutions for non-linear local fractional differential equations.  
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