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A stochastic Gompertz model is proposed to study cancer growth with therapy. 
The model reveals that the therapy and environmental fluctuation can control the 
tumor size, but its extinction is impossible. Optimal therapy treatment is suggest-
ed, and its probability density function is elucidated clearly by the Fokker-Planck 
equation. 
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Introduction 

Now cancer has become one of the major diseases threatening human life seriously, 

and millions of people die of cancer each year [1, 2]. On the other hand, the economic impact 

of medical treatment for cancer is also huge. For example, the overall cost of cancer in 2008 

was around $ 228.1 billion in the US alone [3]. 

A biophysical model may prove to be useful in oncology not only in explaining 
basic phenomena but also in helping clinicians to plan a good and effective schedule of 
the therapy [1]. The most commonly used model is:  

 
d ( )

( ) ln
d ( )

x t k
rx t

t x t
  (1) 

where ( )x t is the density of cancer cells at the time, t, r – the intrinsic growth rate of the tu-

mor, and k – the largest tumor density that an organism can be tolerated. 

Equation (1) is called as Gompertz model [4-11], which is not adequate to describe 

the growth of a small aggregate of tumors [8]. In this way, Gompertz law comes into play on-

ly for sufficiently large populations. Furthermore, the Gompertz model has been almost uni-

versally used to describe the growth of microorganisms [12] and the innovation diffusion such 

as digital cellular telephones [13, 14]. 

We notice that any solution x(t) of eq. (1) with the initial value x(0) > 0 satisfies that

(lim ) .
t

x t k


  

The result shows that if we do not take any treatment, the tumor will grow the 
most number k for 0 < x(0) < k. 
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Taking tumor treatment into consideration, we now introduce one more term in 

eq. (1) in order to model the action of therapy [10, 15]. Let e0 > 0 denotes the intensity of the 

therapy, h is a strictly increasing function and h(0) = 0. Then tumor growth model with thera-

py (constant or time depending) will then be: 

 0

d ( )
( ) ln ( ) ( )

d ( )

x t k
rx t h e x t

t x t
   (2) 

Equation (2) exists a unique positive equilibrium 2 0exp[ ( )/ ].x k h e r    

Similarly, we can prove that
*
2lim ( )

t
x t x


 for any x(0) > 0. In this case, the tumor 

will grow the most number 2 .x  

Notice that 2 0 1exp[ ( )/ ] ,x k h e r x k    
0

0
( )
lim exp[ ( )/ ] 0.

h e
k h e r


    

It means that therapy can make the largest tumor density smaller, and we can seem-

ingly cure any tumor patient when h(e0) or e0 is large enough for the fixed r and k. Now, we 

have another problem, which is a stochastic perturbation. 

It should be stressed that quite often, discrepancies exist between clinical data and 

theoretical predictions due to environmental fluctuation [16, 17]. In practice, h(e0) is disturbed 

by the environment noise from nature or artificial factors, for example, the patient's individual 

differences, small changes on chemotherapy doses. Hence we could modify h(e0) to 

0( ) ( )h e w t  and eq. (2) can be rewritten as a stochastic differential equation of the form: 

 0d ( ) ( ) ln ( ) ( ) d ( )d ( )
( )

k
x t rx t h e x t t x t w t

x t


 
   
 

  (3) 

where ( )w t


is white noise and 0  represents the disturbance intensity. 

Let ( ) ( )w t w t  , then ( )w t  is also a white noise. In this case, eq. (3) can be rewrit-

ten as 

 0d ( ) ( ) ln ( ) ( ) d ( )d ( )
( )

k
x t rx t h e x t t x t w t

x t


 
   
 

  (4) 

which is called the stochastic Gompertz model with therapy. 

When h(e0) = 0, eq. (4) is reduced to: 

 d ( ) ( ) ln d ( )d ( )
( )

k
x t rx t t x t w t

x t
    (5) 

The stochastic Gompertz model eq. (5) is suitable to model the growth of a popula-

tion consisting of a group of individuals of one or more similar species in the absence of mi-

gration and interaction with other species [16]. On the other hand, some scholars [18-22] used 

the model eq. (5) to forecast energy consumption. For example, Gutierrez et al. [23] forecast-

ed natural-gas consumption in Spain, Adam et al. [20] considered peak electricity demand in 

Mauritius, Gutierrez et al. [22] investigated the total consumption of electrical power in Mo-

rocco, etc. However, so far as we know, little research has been done on the stochastic Gom-

pertz model with therapy eq. (4). 

The optimal harvesting policy has been discussed by a number of authors [24-37]. In 

particular, Zou et al. [37] considered the optimal effort for a stochastic Gompertz model by 

using the ergodic theory. They gave the optimal policy but did not obtain the explicit solution 

for stationary distribution because they believed the corresponding Fokker-Planck equation 

could not be solved easily. General methods on stochastic optimal harvesting problems are re-
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lated to Fokker-Planck equations, time-averaging methods, or stochastic calculus, see [24-26, 

38] and references therein. In many cases, the probability density of nonlinear random sys-

tems is very difficult to obtain. Some scholars have done very meaningful research on it. Chen 

and Rui [39] did further work in solving the FPK equation. In [39], a high-dimensional FPK 

equation is reduced to a 1-D or 2-D PDE by invoking the concept of equivalent drift coeffi-

cient. Li et al. [40] introduced new advances in the probability density evolution method for 

nonlinear stochastic systems and derived the generalized density evolution equation (GDEE). 

The present paper is stimulated by Zou et al. [37] which mainly gave some mathe-

matical contributions. The related papers also see [7-11, 16-23]. However, we find that such a 

model is more suitable for tumor growth [5, 6]. On the other hand, [37] suppose that the term 

of harvesting is a linear function of effort. We think that the effect of the therapy (or the har-

vesting policy) should be an increasing function of effort, which increases rapidly at the be-

ginning and gradually slows down later, see eq. (2). In general, the treatment efforts have an 

obvious effect in the early stage and then became less and less apparent. This is mainly caused 

by tumor resistance. At the same time, the noise should also be produced during treatment, 

see eqs. (3) or (4). In fact, the estimations of such parameters had been recently considered in 

Li et al. [41] and references therein. In this paper, we give many numerical simulations except 

for some mathematical contributions such that we can give some help for the cancer treat-

ments. 

Equilibrium state and long-term performance 

First of all, we consider eq. (1). Clearly, 1x k   is the unique positive equilibrium of 

eq. (1). Note that d /( 0) d >tx t  for x k  and that d /( 0) d <tx t  for ,x k  thus, the positive equi-

librium 1x k   is stable. 

Similarly, in eq. (2), the equilibrium point is 2 0exp[ ( )/ ]x k h e r   , and the equi-
librium point 2x  is also stable. It means that if we take suitable therapy, the tumor will 
not grow too big, the patient has the chance to survive. 

Noting that 2x  is not already equilibrium of stochastic eq. (4). It is natural to 
discuss what will happen to the solution ( )x t  in the mean when t   in eq. (4). Our 
main result is stated in the following proposition. 

Theorem 1. For the arbitrary initial value 0(0) 0x x  , assume that ( )x t  is a solu-

tion of eq. (4), then:  

2
0( ) 0.25

lim [ ( )] exp
t

h e
E x t k

r r





 
   

 
 

and  
2

02 ( )

2lim [ ( )] e 1 e

h e

r r

t
D x t k


 



 
  
 
 

 

Proof. By using Ito’s formula, we can obtain a solution: 

 
2

( )0
0

0

( )
( ) exp e ln (1 e ) ln e d

2

t
rt rt r th e

x t x k w
r r





   

   
       

   
  

of eq. (4) with the initial condition 0(0) ] 1[ .P x x   
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Let: 

( )

0

e d

t
r t

tz w
     

then tz is martingale, so .( ) 0tE z   By using the isometry property [42], we can also get that: 

 

2
2

2 ( ) 2 2 ( ) 2

0 0

( ) e d e d (1 e )
2

t t
r t r t rt

tD z E w
r

 



      

 
    

  
   

That is, we have:  

2
2~ 0, (1 e )

2

rt
tz N

r

 
 

 
 

 

Denote:  

2
0

0

( )
( ) exp ln (1 ) ln , then ( ) ( )

2
tzrt rt h e

t e x e k x t t e
r r


  

   
       

   

  

Note that:  

2
2 21

[exp( )] exp exp (1 e )
2 4

rt
t tE z Ez

r

 
  

    
   

 

which implies that: 

 
2 2

20
0

( )
[ ( )] exp e ln (1 e ) ln (1 e )

2 4

rt rt rth e
E x t x k

r r r

   
   

        
   

 

and that  

2
0( )

4lim [ ( )] e

h e

r r

t
E x t k


 


  

Similarly:  

 
2 2

2 2 2 20
0

2 ( )
[ ( ) exp e ln (1 e ) ln (1 e )] rt rt rth e

E x t x k
r r r

   
   

        
   

 

and 

 

2
2 2 0
0

2 2
2 2

2 ( )
[ ( )] exp e ln (1 e ) ln ·

· exp (1 e ) exp (1 e )
2

rt rt

rt rt

h e
D x t x k

r r

r r



 

 

 

   
      

   

 
   

 
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which implies that: 

 

2
02 ( )

2 2lim [ ( )] e 1 e

h e

r r

t
D x t k


 



 
  
 
 

 

The proof is complete. 

Remark 1. We find that: 

 

2
0 0( ) ( )

4
3 2 1e e

h e h e

r r rx k x k x k


  

        

It means that both therapy and environmental fluctuations can make the tumor small 

in the mean. 

Using the data given in [5, 6], 6 3
02·10 , 10 , 0.16,k x r   0( ) 0.16,h e  0.2,   

we can characterize the growth of tumors under three models, model (1) no therapy, model (2) 

with therapy, model (4) with therapy and fluctuations, see fig. 1. 

As we know, we can seemingly cure any 

tumor patient now. The tumor cannot be gotten 

rid of completely in a long time. Maybe perma-

nent and persistent of eq. (4) we will discuss in 

the following can show this phenomenon. 

Definition 1. Equation (4) is said to be 

stochastically permanent [43] if for any

(0,1),   there exist positive constants 

( )    and ( )    such that  

[ ( ) ( )liminf in 1f ]
t

P x t   


  
 

and  

[ ( ) ( )liminf ] 1
t

P x t   


    

where ( )x t  is a solution of eq. (4) with the arbitrary initial value 0(0) 0.xx    

Theorem 2. Equation (4) is stochastically permanent. 

Proof.  For 0,   we have: 

 
ln ln ( )

[ ( ) ] [ ( )e ]
( )

tz

t

t
P x t P t

D z

 
  

 
      

  

 

Note that: 

2
0( )

lim ln ( ) ln , and lim ( )
2 2

t
t t

h e
t k D z

r r r

 


 
     

Thus, we can get that: 

 

2
0( ) 0.5

ln ln

lim [ ( ) ]

2

t

h e
k

r r
P x t

r







  
    

  
   

 
 
 

 

 

Figure1. Tumor growth under three models 
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For any (0,1),   we choose that: 

 
2

1 0( )
0 ( ) exp ( ) ln

22

h e
k

r rr

 
  

  
      

  
 

then: 

 

2
0( ) 0.5

ln ( ) ln

lim [ ( ) ( )] 1 1

2

t

h e
k

r r
P x t

r


 

  


  
    

  
     

 
 
 

 

Similarly, we take: 

 
2

1 0( )
( ) exp (1 ) ln

22

h e
k

r rr

 
  

 
      

 
 

then: 

 

2
0( ) 0.5

ln ( ) ln

lim [ ( ) ( )] 1

2

t

h e
k

r r
P x t

r


 

  


  
    

  
     

 
 
 

 

The proof is completed. 

Remark 2. In the study of population systems, permanence is one of the most im-

portant and interesting characteristics, meaning that the population system will survive in the 

future. Although the tumor cannot be removed completely, many patients can survive with 

tumors. 

Definition 2. Equation (4) is said to be persistent in mean [44] if: 

0

1
liminf ( )d 0 a.s.

t

t
x s s

t
  

where ( )x t  is a solution of eq. (4) with the arbitrary initial value 0(0) 0.xx    

Theorem 3. Equation (4) is persistent in the mean. 

Indeed, we can conclude it from Theorem 2 of [37]: 

 

2
0( )

4

0

1
lim ( )d lim [ ( )] 0

h et

r r

t t
x s s E x t ke

t


 

 
    

Remark 3. Persistence is another expression of survival of the population. 

From Theorem 2 and Theorem 3, and Remarks 3 and 4, even if we take therapy and 

there are environmental fluctuations, the tumor does not go extinct. Well-known, current 

chemotherapy or radiotherapy treatments is a double-edged sword. It can kill not only tumor 

cells but also normal cells. In most cases, cancer cannot be cured. So in cases that are beyond 

cure, the clinical prerogative is changed to extending life. This means that the tumor is no 
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longer aggressively attacked, and instead, only the drugs necessary to prevent patient death 

are applied until the inevitable occurs. Perhaps this mindset shift is unnecessary; instead, the 

goal could always be control of the tumor, whether that be successful eradication or not, this 

would be a more realistic yardstick for treatment success [15].  

Optimal therapy policy 

The very natural question is, how much do we pay the efforts of therapy in order to 

achieve the best therapeutic effect? The problem is similar to that of the optimal harvesting 

policy of renewable resources. Classical methods on stochastic optimal harvesting problems 

are related to Fokker-Planck equations, time-averaging methods ergodic theory, or stochastic 

calculus, such as [24-38] and references therein. In what follows, we will discuss the optimal 

therapy policy of eq. (4) by using Fokker-Planck equation [45, 46].  

Let 0( ) ( )ln /[ ( )] ( ) ( ), ( ) .m x rx t k x t h e x t x x      

Therefore, the Fokker-Planck equation corresponding to eq. (4) is: 

 
2

20
0 02

( , , ) 1
[ ( ) ( , , )] [ ( ) ( , , )]

2

p x t e
m x p x t e x p x t e

t x x


  
  

  
 

Thus, the equation satisfied by the stationary distribution is: 

 
2

2
0 02

d 1 d
[ ( ) ( , )] [ ( ) ( , )] 0

d 2 d
m x p x e x p x e

x x
   

So: 

2
0 0

1 d
( ) ( ) ( , ) [ ( ) ( , )]

2 d
J x m x p x e x p x e

x
 

 

must be constant. It is easy to see that 
0

( ) 0.
x
lim J x


  Equation (4) has an explicit solution: 

 

0

2 2

2 ln 2 ( )
2 ln

0 0( , ) ( )

r k h e r
x

p x e N e x  


 

  

where 

 
2

20 0 0 0
0 0 0 02 2 2

( ) ( , ) 2 ln ( )
( ) exp ln ln ( ) , 0

x p x e r k h e r
N e x x x



  

 
    

 
 

 0( )N e is determined by 

0

2 2

2 ln 2 ( )
2 ln

0

0

1 ( ) d

r k h e r
x

N e x x 

  

  . Obviously:

0

2 2

1
2 ln 2 ( )

2 ln

0

0

( ) d

r k h e r
x

N e x x 


   

 
 
 
  

The improper integral is convergent for all the 0( ) [0, ).h e    Let ln ,x t  then: 

 

2
2

0
0

2 2 2

[ ln ( ) ]
2 ln 2 ( ) 22 ln

0

π
d e

r k h e
r k h e r

x
rx x

r



  

 
  

  
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Then: 

 

2 0
12 2 2

2 ln 2 ( )
2 ln

0

1
( , ) e

π

r k h er r
b xr

p x e x  




  

  (6) 

Similar to [24-28, 37] and references therein, we will give the curative effect of 

therapy expressed 

 

2
0( )

4
0 0 0 0 0

0

( ) [ ( ) ] ( ) ( , )d ( )e

h e

r rF e E h e X h e xp x e x ke h e


 

    

Since: 

0 0

0 0

( ) ( )

0 0
( ) 0 ( )
lim ( )e 0 and lim ( )e 0

h e h e

r r

h e h e
h e h e

 

 
   

then F(0) = 0 and F(+∞) = 0. 

Let f(y) = ye(–y/r). So ( )f y is increasing as ;y r  and decreasing as .y r  It is easy 

to see: 

arg max ( )
y

r f y  

Hence:  

2

4
0 0( ) e [ ( )]rF e k f h e




  

reach the maximum at 1
0 ( ),e h r   and: 

2

1
4

0( ) e rF e rk


 

   

At last, the corresponding variance of the curative effect of chemotherapy is: 
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 


 

The result show when therapeutic agents item 0( )h e  equals to the intrinsic growth 

rate, the tumor growth is slowest. 

Given data of Ehrilich under three situations [5, 6],  

– 0( ),r h e  
62·10 ,k   3

0 10 ,x   =0.16,r  0( ) 0.16,h e   0.2,    

– 6
0( ), 2·10 ,r h e k  3

0 10 ,x  =0.16,r 0( ) 0.08,h e   0.2,    

– 0( ),r h e  
62·10 ,k  3

0 10 ,x  =0.16,r 0( ) 0.32,h e   0.2.   
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The curative effect of chemotherapy is characterized by fig. 2. 

Remark 4. By eq. (6), the stationary distri-

bution x of Model (4) is lognormal distribu-

tion, i.e.: 

2 2
0( )

ln ~ ln ,
2 2

h e
x N k

r r r

 
 

  
 

 

If we take the following values:  

– 
62·10 ,k  =0.16,r 0 1( 6) 0. ,h e  2 0.04;    

– 
610 ,k  =0.16,r 0 1( 6) 0. ,h e  2 0.04;   the 

distributions of ln x  have different mean but 

the same standard deviation.  

If we take the following values:  

– 
62·10 ,k  =0.16,r 0 1( 6) 0. ,h e  2 0.32;    

– 
65.436·10 ,k  =0.16,r 0 1( 6) 0. ,h e 

2 0.64;   the distributions of ln x  have dif-

ferent standard deviation but the same mean, 

fig. 3. 

Conclusions 

The size of the tumor described by the 

Gompertz Model (4) with therapy and envi-

ronmental fluctuations will oscillate around the 

mean 1 2 1
3 0exp[ ( ) 0.25 ]x k h e r r     as 

,t   and its equilibrium point is greater 

than that of the Gompertz Model (2) with ther-

apy. It concludes that both therapy and envi-

ronmental fluctuations can make the tumor 

small for a long time. 

The tumor model given in eq. (4) is sto-

chastically permanent and persistent. It means 

even if we take therapy and there are environ-

mental fluctuations, the tumor does not go extinct.  

When the intensity of the chemotherapy 0e  takes 1( )h r  in eq. (4), the treatment ef-

fect is the best. The stationary distribution of Model (4) is lognormal distribution. 
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